在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 高中數學大單元教學設計

    時間:2024-04-15 10:36:38 設計 我要投稿
    • 相關推薦

    高中數學大單元教學設計

      作為一名老師,時常需要編寫教學設計,借助教學設計可以讓教學工作更加有效地進行。我們該怎么去寫教學設計呢?下面是小編收集整理的高中數學大單元教學設計,僅供參考,希望能夠幫助到大家。

    高中數學大單元教學設計

    高中數學大單元教學設計1

      重點難點教學:

      1.正確理解映射的概念;

      2.函數相等的兩個條件;

      3.求函數的定義域和值域。

      教學過程:

      1.使學生熟練掌握函數的概念和映射的定義;

      2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。

      教學內容:

      1.函數的定義

      設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的"任意一個數x,在集合B中都有唯一確定的數fx和它對應,那么稱:fAB?為從集合A到集合B的.一個函數(function),記作:,yfA其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}fA?叫值域(range)。顯然,值域是集合B的子集。

      注意:

     、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

      ②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.

      2.構成函數的三要素定義域、對應關系和值域。

      3、映射的定義

      設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

      4.區(qū)間及寫法:

      設a、b是兩個實數,且a

      (1)滿足不等式axb的實數x的集合叫做閉區(qū)間,表示為[a,b];

      (2)滿足不等式axb的實數x的集合叫做開區(qū)間,表示為(a,b);

      5.函數的三種表示方法

     、俳馕龇

     、诹斜矸

     、蹐D像法

    高中數學大單元教學設計2

      一、單元教學內容

      (1)算法的基本概念

      (2)算法的基本結構:順序、條件、循環(huán)結構

      (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

      二、單元教學內容分析

      算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發(fā)展,算法在科學技術、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養(yǎng)。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的.能力,提高邏輯思維能力。

      三、單元教學課時安排:

      1、算法的基本概念3課時

      2、程序框圖與算法的基本結構5課時

      3、算法的基本語句2課時

      四、單元教學目標分析

      1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

      2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。

      3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

      4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發(fā)展的貢獻。

      五、單元教學重點與難點分析

      1、重點

      (1)理解算法的含義

      (2)掌握算法的基本結構

      (3)會用算法語句解決簡單的實際問題

      2、難點

      (1)程序框圖

      (2)變量與賦值

      (3)循環(huán)結構

      (4)算法設計

      六、單元總體教學方法

      本章教學采用啟發(fā)式教學,輔以觀察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節(jié)知識。

      七、單元展開方式與特點

      1、展開方式

      自然語言→程序框圖→算法語句

      2、特點

      (1)螺旋上升分層遞進

      (2)整合滲透前呼后應

      (3)三線合一橫向貫通

      (4)彈性處理多樣選擇

      八、單元教學過程分析

      1、算法基本概念教學過程分析

      對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

      2、算法的流程圖教學過程分析

      對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會用流程圖表示算法。

      3、基本算法語句教學過程分析

      經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發(fā)展的貢獻。

      九、單元評價設想

      1、重視對學生數學學習過程的評價

      關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數學語言進行交流的能力。

      2、正確評價學生的數學基礎知識和基本技能

      關注學生在本章(節(jié))及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

    高中數學大單元教學設計3

      一、課題:

      人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》

      二、指導思想與理論依據:

      《數學課程標準》指出:高中數學課程應講清一些基本內容的實際背景和應用價值,開展“數學建模”的學習活動,把數學的應用自然地融合在平常的教學中。任何一個數學概念的引入,總有它的現實或數學理論發(fā)展的需要。都應強調它的現實背景、數學理論發(fā)展背景或數學發(fā)展歷史上的背景,這樣才能使教學內容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數學內容的實際背景和應用的價值。在教學設計時,既要關注學生在數學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數學基礎知識和基本技能,發(fā)展能力。在課程實施中,應結合教學內容介紹一些對數學發(fā)展起重大作用的歷史事件和人物,用以反映數學在人類社會進步、人類文化建設中的作用,同時反映社會發(fā)展對數學發(fā)展的促進作用。

      三、教材分析:

      本節(jié)內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的.知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。

      四、學情分析:

      在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。

      五、教學目標:

      (一)教學知識點:

      1.對數的概念。

      2.對數式與指數式的互化。

      (二)能力目標:

      1.理解對數的概念。

      2.能夠進行對數式與指數式的互化。

      (三)德育滲透目標:

      1.認識事物之間的相互聯系與相互轉化,2.用聯系的觀點看問題。

      六、教學重點與難點:

      重點是對數定義,難點是對數概念的理解。

      七、教學方法:

      講練結合法八、教學流程:

      問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)

      八、教學反思:

      對本節(jié)內容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節(jié)內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。

      對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。

    高中數學大單元教學設計4

      【教學目的】

     。1)使學生初步理解集合的概念,知道常用數集的概念及記法

     。2)使學生初步了解“屬于”關系的意義

      (3)使學生初步了解有限集、無限集、空集的意義

      【重點難點】

      教學重點:集合的基本概念及表示方法

      教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

      授課類型:新授課

      課時安排:1課時

      教具:多媒體、實物投影儀

      【內容分析】

      1、集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

      把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯

      本節(jié)首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

      這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念

      集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

      【教學過程】

      一、復習引入:

      1、簡介數集的發(fā)展,復習最大公約數和最小公倍數,質數與和數;

      2、教材中的章頭引言;

      3、集合論的創(chuàng)始人——康托爾(德國數學家)(見附錄);

      4、“物以類聚”,“人以群分”;

      5、教材中例子(P4)

      二、講解新課:

      閱讀教材第一部分,問題如下:

     。1)有那些概念?是如何定義的?

      (2)有那些符號?是如何表示的?

      (3)集合中元素的特性是什么?

     。ㄒ唬┘系挠嘘P概念:

      由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

      定義:一般地,某些指定的對象集在一起就成為一個集合。

      1、集合的概念

     。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

      (2)元素:集合中每個對象叫做這個集合的元素

      2、常用數集及記法

      (1)非負整數集(自然數集):全體非負整數的集合記作N,(2)正整數集:非負整數集內排除0的集記作Nx或N+

      (3)整數集:全體整數的'集合記作Z,(4)有理數集:全體有理數的集合記作Q,(5)實數集:全體實數的集合記作R

      注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

     。2)非負整數集內排除0的集記作Nx或N+Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Zx

      3、元素對于集合的隸屬關系

     。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

      4、集合中元素的特性

      (1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

     。2)互異性:集合中的元素沒有重復

     。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

      5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

      ⑵“∈”的開口方向,不能把a∈A顛倒過來寫

      三、練習題:

      1、教材P5練習1、2

      2、下列各組對象能確定一個集合嗎?

     。1)所有很大的實數(不確定)

     。2)好心的人(不確定)

      (3)1,2,2,3,4,5.(有重復)

      3、設a,b是非零實數,那么可能取的值組成集合的元素是-2,0,2

      4、由實數x,-x,|x|,所組成的集合,最多含(A)

      (A)2個元素(B)3個元素(C)4個元素(D)5個元素

      5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:

     。1)當x∈N時,x∈G;

     。2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

      證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,則x=x+0x=a+b∈G,即x∈G

      證明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

      ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

      ∵a∈Z,b∈Z,c∈Z,d∈Z

      ∴(a+c)∈Z,(b+d)∈Z

      ∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整數,∴=不一定屬于集合G

      【小結】

      1、集合的有關概念:(集合、元素、屬于、不屬于)

      2、集合元素的性質:確定性,互異性,無序性

      3、常用數集的定義及記法

    高中數學大單元教學設計5

      一、教材

      《直線與圓的位置關系》是高中人教版必修2第四章第二節(jié)的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。

      二、學情

      學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。

      三、教學目標

      (一)知識與技能目標

      能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

      (二)過程與方法目標

      經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

      (三)情感態(tài)度價值觀目標

      激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現新知識、總結規(guī)律的能力,解題時養(yǎng)成歸納總結的良好習慣。

      四、教學重難點

      (一)重點

      用解析法研究直線與圓的位置關系。

      (二)難點

      體會用解析法解決問題的數學思想。

      五、教學方法

      根據本節(jié)課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的.動態(tài)演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設計一系列問題串,以引導學生的數學思維活動。

      六、教學過程

      (一)導入新課

      教師借助多媒體創(chuàng)設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的1處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

      教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。

      設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。

      (二)新課教學——探究新知

      教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

      判斷方法:

      (1)定義法:看直線與圓公共點個數

      即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。

      (2)比較法:圓心到直線的距離d與圓的半徑r做比較

      (三)合作探究——深化新知

      教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。

      已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?

      讓學生自主探索,討論交流,并闡述自己的解題思路。

      當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。

      (四)歸納總結——鞏固新知

      為了將結論由特殊推廣到一般引導學生思考:

      可由方程組的解的不同情況來判斷:

      當方程組有兩組實數解時,直線1與圓C相交;當方程組有一組實數解時,直線1與圓C相切;當方程組沒有實數解時,直線1與圓C相離。

      活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續(xù)學習的信心。

      (五)小結作業(yè)

      在小結環(huán)節(jié),我會以口頭提問的方式:

      (1)這節(jié)課學習的主要內容是什么?

      (2)在數學問題的解決過程中運用了哪些數學思想?

      設計意圖:啟發(fā)式的課堂小結方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網絡進行主動建構。

      作業(yè):在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。

    高中數學大單元教學設計6

      一、單元教學內容

     。ǎ保┧惴ǖ幕靖拍

     。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構

      (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

      二、單元教學內容分析

      算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發(fā)展,算法在科學技術、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養(yǎng)。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的'作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

      三、單元教學課時安排:

      1、算法的基本概念3課時

      2、程序框圖與算法的基本結構5課時

     。、算法的基本語句2課時

      四、單元教學目標分析

     。薄⑼ㄟ^對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

     。、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。

     。、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

     。础⑼ㄟ^閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發(fā)展的貢獻。

      五、單元教學重點與難點分析

     。、重點

     。ǎ保├斫馑惴ǖ暮x

      (2)掌握算法的基本結構

     。ǎ常⿻盟惴ㄕZ句解決簡單的實際問題

     。病㈦y點

     。ǎ保┏绦蚩驁D

      (2)變量與賦值

     。ǎ常┭h(huán)結構

     。ǎ矗┧惴ㄔO計

      六、單元總體教學方法

      本章教學采用啟發(fā)式教學,輔以觀察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節(jié)知識。

      七、單元展開方式與特點

     。、展開方式

      自然語言→程序框圖→算法語句

     。病⑻攸c

     。ǎ保┞菪仙謱舆f進

      (2)整合滲透前呼后應

     。ǎ常┤合一橫向貫通

     。ǎ矗⿵椥蕴幚矶鄻舆x擇

      八、單元教學過程分析

      1.算法基本概念教學過程分析

      對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

      2.算法的流程圖教學過程分析

      對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會用流程圖表示算法。

      3.基本算法語句教學過程分析

      經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,4.通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發(fā)展的貢獻。

      九、單元評價設想

      1、重視對學生數學學習過程的評價

      關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數學語言進行交流的能力。

      2、正確評價學生的數學基礎知識和基本技能

      關注學生在本章(節(jié))及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

    高中數學大單元教學設計7

      一、教學內容分析

      圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

      二、學生學習情況分析

      我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

      三、設計思想

      由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學效率。

      四、教學目標

      1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

      2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

      3、借助多媒體輔助教學,激發(fā)學習數學的興趣。

      五、教學重點與難點:

      教學重點

      1、對圓錐曲線定義的理解

      2、利用圓錐曲線的定義求“最值”

      3、“定義法”求軌跡方程

      教學難點:

      巧用圓錐曲線定義解題

      六、教學過程設計

      【設計思路】

      (一)開門見山,提出問題

      一上課,我就直截了當地給出例題1:

      (1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

      (A)橢圓(B)雙曲線(C)線段(D)不存在

      (2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

      (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

      【設計意圖】

      定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。

      為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

      【學情預設】

      估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

      這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的`兩個距離公式。

      在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

      (二)理解定義、解決問題

      例2:

      (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。

      (2)在(1)的條件下,給定點P(-2,2),求|PA|

      【設計意圖】

      運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

      【學情預設】

      根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。

      (三)自主探究、深化認識

      如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。

      練習:

      設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

      引申:若將點A移到圓C外,點M的軌跡會是什么?

      【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,可借助“多媒體課件”,引導學生對自己的結論進行驗證。

      【知識鏈接】

      (一)圓錐曲線的定義

      1、圓錐曲線的第一定義

      2、圓錐曲線的統(tǒng)一定義

      (二)圓錐曲線定義的應用舉例

      1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

      2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

      3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

      4、例題:

      (1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

      (2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

      (3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

      5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

      七、教學反思

      1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優(yōu)勢。

      2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

      總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

    【高中數學大單元教學設計】相關文章:

    高中數學單元教學設計06-19

    音樂單元教學設計11-02

    高中數學教學設計07-02

    小學數學單元教學設計05-29

    《單元練習1》教學設計04-03

    《單元練習3》教學設計04-06

    高中數學教學設計范文05-08

    高中數學優(yōu)秀教學設計08-05

    高中數學教學設計優(yōu)秀10-23