在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 《二元一次方程組》教學(xué)設(shè)計(jì)

    時(shí)間:2023-06-12 12:03:46 設(shè)計(jì) 我要投稿

    《二元一次方程組》教學(xué)設(shè)計(jì)

      作為一名老師,總不可避免地需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以提高教學(xué)效率和教學(xué)質(zhì)量。我們應(yīng)該怎么寫教學(xué)設(shè)計(jì)呢?以下是小編幫大家整理的《二元一次方程組》教學(xué)設(shè)計(jì),希望對(duì)大家有所幫助。

    《二元一次方程組》教學(xué)設(shè)計(jì)

    《二元一次方程組》教學(xué)設(shè)計(jì)1

      教學(xué)目標(biāo)

      1.會(huì)用代入法解二元一次方程組;

      2.體會(huì)解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.

      3.通過對(duì)方程中未知數(shù)特點(diǎn)的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

      教學(xué)重難點(diǎn)

      1.熟練的用代入法解二元一次方程組。

      2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。

      教學(xué)過程

      一、創(chuàng)設(shè)問題,引入新課

      1.問題1:籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝一場得2分,負(fù)一場得1分.某隊(duì)為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個(gè)隊(duì)勝、負(fù)場數(shù)分別是多少?

      解:設(shè)勝場數(shù)是x則負(fù)的場數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負(fù)的場數(shù)為

      20-x=20-18=2

      2.問題2:在上述問題中,我們可以設(shè)出兩個(gè)未知數(shù),列出二元一次方程組,若設(shè)勝的場數(shù)是x,負(fù)的場數(shù)是y,則

      x+y=20

      2x+y=38

      那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?

      設(shè)計(jì)意圖:通過創(chuàng)設(shè)同一問題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對(duì)兩者關(guān)聯(lián)認(rèn)識(shí),為后續(xù)代入消元法解二元一次方程作鋪墊。

      二、學(xué)生探索,嘗試解決

      交流問題2:可以發(fā)現(xiàn),二元一次方程組中第一個(gè)方程x+y=20可的到y(tǒng)=20-x,將第2個(gè)方程2x+y=38中y換為20-x,這個(gè)方程就化為一元一次方程2x+(20-x)=38.

      歸納:

      二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個(gè)未知數(shù),然后再設(shè)法求另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想方法,叫做消元思想.

      歸納小結(jié):上面的解法,是把二元一次方程組中一個(gè)方程中的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的 解.這種方法叫做代入消元法,簡稱代入法.

      設(shè)計(jì)意圖:通過交流問題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來,代入消元法的步驟和功效逐步顯現(xiàn)出來。

      三、典例交流,揭示規(guī)律

      例1:用代入法解二元一次方程組x=y+3(1)

      3x-8y=14(2)

      解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

      所以這個(gè)方程組的解是 x=2,

      y=-1

      思考下列問題

     。1)選擇哪個(gè)方程代入另一個(gè)方程?目的是什么?

     。2)為什么能代入?目的達(dá)到了嗎?

      (3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個(gè)方程求x的值較簡單?

     。4)怎樣知道你運(yùn)算的結(jié)果是否正確?

      反思:需檢驗(yàn),將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗(yàn)算.【例2】用代入法解二元一次方程組x-y=3(1)

      3x-8y=14(2)

      思考:

      (1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個(gè)方程都不具備這樣的條件.)

      (2)如何變形?(把其中一個(gè)方程變形為例1中①的形式.)

      (3)選擇哪個(gè)方程變形較簡單?(方程①中的x的系數(shù)為1,故可以將方程①變形得x=3+y.)

     。▽W(xué)生口述,教師板書完成)

      用代入消元法解二元一次方程組的步驟:

      (1)從方程組中選取一個(gè)系數(shù)比較簡單的方程,把其中的某一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來.(變)

      (2)把(1)中所得的'方程代入另一個(gè)方程,消去一個(gè)未知數(shù).(代)

      (3)解所得到的一元一次方程,求得一個(gè)未知數(shù)的值.(求)

      (4)把所求得的一個(gè)未知數(shù)的值代入(1)中求得的方程,求出另一個(gè)未知數(shù)的值,從而確定方程組的解.(解)

      設(shè)計(jì)意圖:進(jìn)一步加強(qiáng)利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。

      四、變式訓(xùn)練,深化提高

      用代入法解下面方程組

      設(shè)計(jì)意圖:通過學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。

      五、師生共進(jìn),反思小結(jié)1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組

      2、主要的解題思想方法是消元思想。

      3、代入消元法解二元一次方程組需要注意的問題.

      (1)用代入法解二元一次方程組時(shí),常選用系數(shù)比較簡單的方程變形,這有利于正確、簡捷地消元.

      (2)由一個(gè)方程變形得到的只含有一個(gè)未知數(shù)的代數(shù)式必須代入到另一個(gè)方程中去,否則會(huì)出現(xiàn)一個(gè)恒等式.

      (3)方程組解的表示方法,應(yīng)該用大括號(hào)把一對(duì)未知數(shù)的值連在一起,表示同時(shí)成立,不要寫成x=?y=?

      六、布置作業(yè):

      習(xí)題8.2 1,2題

      七、板書設(shè)計(jì)

    《二元一次方程組》教學(xué)設(shè)計(jì)2

      教學(xué)目標(biāo)

      1.認(rèn)識(shí)二元一次方程和二元一次方程組.

      2.了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.

      重點(diǎn)、難點(diǎn)

      重點(diǎn):理解二元一次方程組的解的意義

      難點(diǎn):求二元一次方程的正整數(shù)解

      教學(xué)過程

      一、復(fù)習(xí)導(dǎo)入

      什么是一元一次方程?“元”指什么?“次”指什么?

      什么是方程的解?

      設(shè)計(jì)意圖:通過學(xué)生復(fù)習(xí)以前的內(nèi)容,知道用元與次的含義,為這節(jié)課所學(xué)的二元一次方程組奠定基礎(chǔ)。

      二、觀看視頻

      觀看洋蔥視頻關(guān)于二元一次方程組的內(nèi)容,通過熟悉的雞兔同籠問題來引發(fā)思考。

      視頻內(nèi)容

      設(shè)計(jì)意圖:用視頻吸引學(xué)生注意力,引起學(xué)生的認(rèn)知沖突,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過視頻內(nèi)容,學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。

      三、探究新知

      根據(jù)視頻內(nèi)容歸納出二元一次方程的定義:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程.

      把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.

      提問:對(duì)比兩個(gè)方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

      師生共同總結(jié)二元一次方程組的概念像這樣方程組中有兩個(gè)個(gè)未知數(shù),含有每個(gè)未知數(shù)的項(xiàng)的次數(shù)都是1,并且一共有兩個(gè)方程,像這樣的方程組叫做二元一次方程組.

      探究二元一次方程組的解:

      滿足x+y=10的值有哪些?請(qǐng)?zhí)钊氡碇校?/p>

      使二元一次方程兩邊相等的未知數(shù)的值,叫做二元一次方程的解,記作.

      滿足方程2x+y=16且符合問題的實(shí)際意義的.x 、y的值如下表:

      不難發(fā)現(xiàn)x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是說是這兩個(gè)方程的公共解,我們把它們叫做方程組的解。

      歸納二元一次方程組的解的定義:二元一次方程組中的兩個(gè)方程的公共解叫做二元一次方程組的解.

      思考:3x+y=10的解有多少個(gè)?一個(gè)解有幾個(gè)數(shù)?正整數(shù)解有幾個(gè)?

      帶著問題讓學(xué)生觀看洋蔥數(shù)學(xué)視頻二元一次方程組的解

      視頻內(nèi)容

      設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識(shí)的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標(biāo)表示平移觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。

      四、例題講解

      例、若方程2x2m+3+3y3n-7=0是關(guān)于x、y的二元一次方程,求m+n的值。

      例2、暴風(fēng)雨即將來臨,一群螞蟻正忙著搬家.其中有大螞蟻和小螞蟻,已知大小螞蟻總共有1 00只,小螞蟻一次只能搬一粒食物,大螞蟻一次能搬兩粒,一場忙碌過后,洞里的160粒食物剛好一次被安全轉(zhuǎn)移,求大小螞蟻各有幾只?

      例3、

      學(xué)生思考,試著解答,最后共同宣布答案。

      設(shè)計(jì)意圖:在例題講解過程中,讓學(xué)生充分活動(dòng)起來,通過例題探究來進(jìn)行總結(jié),不要讓學(xué)生死記硬背,重點(diǎn)在理解,會(huì)靈活運(yùn)用。

      五、隨堂練習(xí)

      1.下列方程中,是二元一次方程的是( )

      A.3x-2y=4z B.6xy+9=0

      C.+4y=6 D.4x=

      2.下列方程組中,是二元一次方程組的是( )

      A. B.

      C. D.

      3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程為關(guān)于x,y的二元一次方程,則k值為( )

      A.-2 B.2或-2 C.2 D.以上答案都不對(duì)

      4.二元一次方程x-2y=1有無數(shù)多個(gè)解,下列四組值中不是該方程的解的是( )

      A、 B、 C、 D、

      5.二元一次方程組的解為( )

      A. B. C. D.

      6.為了開展陽光體育活動(dòng),某班計(jì)劃購買毽子和跳繩兩種體育用品,共花費(fèi)35元,毽子單價(jià)3元,跳繩單價(jià)5元,購買方案有( )

      A.1種B.2種C.3種D.4種

      設(shè)計(jì)意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),升華知識(shí)

      六、拓展延伸

      1.有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運(yùn)貨15.5噸,5輛大貨車與6輛小貨車一次可以運(yùn)貨35噸,設(shè)一輛大貨車一次可以運(yùn)貨x噸,一輛小貨車一次可以運(yùn)貨y噸,根據(jù)題意所列方程組正確的是( )

      A. B.

      C. D.

      2.甲、乙兩人共同解方程組由于甲看錯(cuò)了方程①中的a,得到方程組的解為乙看錯(cuò)了方程②中的b,得到方程組的解為試計(jì)算a2 016+(-b)2 017.

      設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)是鞏固本課知識(shí)點(diǎn),通過設(shè)置練習(xí),來檢測學(xué)生的掌握情況,在這部分的設(shè)計(jì)中,主要是發(fā)揮學(xué)生作為教學(xué)主體的主動(dòng)性,讓學(xué)生感受學(xué)習(xí)的樂趣和成功的喜悅。

      七、課堂小結(jié)

      以提問進(jìn)行:

     。1)、二元一次方程(組)的特征是什么?

     。2)、二元一次方程組的解要滿足什么條件?

      設(shè)計(jì)意圖:通過共同小結(jié)使學(xué)生歸納、梳理總結(jié)本節(jié)的知識(shí)、技能、方法,將本課所學(xué)的知識(shí)與以前所學(xué)的知識(shí)進(jìn)行緊密聯(lián)結(jié),再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),改善學(xué)生的學(xué)習(xí)方式。有利于培養(yǎng)學(xué)生數(shù)學(xué)思想、數(shù)學(xué)方法、數(shù)學(xué)能力和對(duì)數(shù)學(xué)的積極情感.同時(shí)為以后的學(xué)習(xí)作知識(shí)儲(chǔ)備.

      八、教學(xué)反思

      1.概念課教學(xué)模式:本節(jié)課的主要內(nèi)容是二元一次方程(組)的有關(guān)概念,設(shè)計(jì)時(shí)按照“實(shí)例研究,初步體會(huì)——比較分析,把握實(shí)質(zhì)——?dú)w納概括,形成定義——應(yīng)用提高,發(fā)展能力”的思路進(jìn)行,讓學(xué)生體會(huì)到是因?yàn)椤靶枰倍鴮W(xué)習(xí)新知識(shí),逐步滲透應(yīng)用意識(shí)。

      2.類比法的運(yùn)用:二元一次方程及其解的意義類比一元一次方程學(xué)習(xí),一方面加深學(xué)生對(duì)于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關(guān)知識(shí)的異同,同時(shí)為二元一次方程組相關(guān)概念掃清障礙。

      3.分層遞進(jìn),循環(huán)上升:學(xué)生對(duì)知識(shí)的理解,教師對(duì)學(xué)生的要求,都是由低到高,逐步提升,題目的設(shè)計(jì)從單一知識(shí)點(diǎn)的直接運(yùn)用,逐漸到多個(gè)知識(shí)點(diǎn)的靈活運(yùn)用,給學(xué)生設(shè)計(jì)必要的臺(tái)階,使其一步步向前,最終達(dá)到教學(xué)目標(biāo)。

    《二元一次方程組》教學(xué)設(shè)計(jì)3

      二元一次方程組是一元一次方程教學(xué)的延續(xù)與深化。很多一元一次方程應(yīng)用題均可用二元一次方程組來解決而得以簡化,如:數(shù)學(xué)課外興趣小組成員去建設(shè)工地參加實(shí)踐活動(dòng),男同學(xué)戴白色安全帽,女同學(xué)戴紅色安全帽,在每個(gè)男同學(xué)看來,紅白安全帽一樣多,而在女同學(xué)看來,白色安全帽是紅色安全帽的2倍,問男女同學(xué)各是多少名?——這個(gè)問題若用一元一次方程來解,有兩種解法:(1)可設(shè)男同學(xué)x名,則女同學(xué)(x—1)名,根據(jù)“男同學(xué)人數(shù)=2(女同學(xué)人數(shù)—1)”這個(gè)等量關(guān)系可列方程:x=2×[(x—1)—1];(2)設(shè)女同學(xué)y名,則男同學(xué)2(y—1)名,根據(jù)“男同學(xué)人數(shù)—1=女同學(xué)人數(shù)”這個(gè)等量關(guān)系可列方程:2(y—1)—1=y。如此解決問題比較“繞”,數(shù)學(xué)的特點(diǎn)是“趨簡”、“趨明了”,于是促生了“尋找另外的簡捷的辦法”的欲望。

      由于本題有兩個(gè)等量關(guān)系:男同學(xué)人數(shù)=2(女同學(xué)人數(shù)—1)、男同學(xué)人數(shù)—1=女同學(xué)人數(shù);兩個(gè)未知數(shù):男生人數(shù)、女生人數(shù),如果設(shè)男生x人,女生y人,可以得到兩個(gè)方程:(1)x—1=y,(2)x=2(y—1),要解決這個(gè)問題,就須尋找滿足兩個(gè)方程的x、y值,于是就延伸到了解二元一次方程組的問題。

      由于學(xué)生已經(jīng)學(xué)會(huì)了用一元一次方程解決這個(gè)問題,一旦提及求二元一次方程組的`解,學(xué)生自然會(huì)隱隱約約地想到它們之間必然存在某種聯(lián)系,于是引導(dǎo)學(xué)生觀察、聯(lián)系、聯(lián)想,可以“化歸”為一元一次方程解決這個(gè)問題:

      從而實(shí)現(xiàn)問題的解決。

      課程結(jié)束后,還要引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行升華:列一元一次方程解應(yīng)用題,與列二元一次方程組解應(yīng)用題,有什么特點(diǎn)?學(xué)生們經(jīng)過思考爭辯,最終達(dá)成如下意見即可視為完成教學(xué)任務(wù):(1)列一元一次方程時(shí),需要將其中的一個(gè)量用含有另一個(gè)量的式子表示出來,也就是說,尋找相等關(guān)系容易,列方程要相對(duì)困難一些。(2)列二元一次方程組時(shí),只要找出相等關(guān)系(2個(gè))設(shè)未知數(shù)(2個(gè)),就可以較容易地列出方程組,所以列方程(組)相對(duì)簡單,而解方程組要難一些,順著這種感覺,可以引導(dǎo)學(xué)生研究如何便捷地解方程組就成為當(dāng)務(wù)之急了。

    《二元一次方程組》教學(xué)設(shè)計(jì)4

      一、教材分析

      本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

      二、教學(xué)目標(biāo)

      1.使學(xué)生學(xué)會(huì)用代入消元法解二元一次方程組.

      2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會(huì)化歸思想.

      三、教學(xué)重難點(diǎn)

      1.重點(diǎn):用代入法解二元一次方程組.

      2.難點(diǎn):在“消元”的過程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡便的過程。

      四、教學(xué)過程

     。1)復(fù)習(xí)引入

      在上節(jié)課中我們學(xué)習(xí)了二院一次方程組的有關(guān)概念,并學(xué)習(xí)了二元一次方程組的概念還學(xué)會(huì)判斷一組值是否是二元一次方程組的解的問題,同學(xué)們還記得二元一次方程組和二元一次方程組的解的概念嗎?追問二元一次方程組既然有解那么它們的解又怎么求呢?

      設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

     。2)探究新知

      此過程通過播放洋蔥視頻中的`代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問題。

      一個(gè)問題是為什么能用一元一次方程解決的實(shí)際問題我們要用二元一次方程組來解決?第二個(gè)問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

      播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

     。3)例題講解

      讓學(xué)生嘗試解答

      設(shè)計(jì)意圖:讓學(xué)生通過例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問題。

      預(yù)想大部分學(xué)生例2會(huì)存在這樣的問題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問題:

     。1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)

      (2)選擇哪個(gè)方程變形比較簡便呢?

      再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,

      讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡便的進(jìn)行運(yùn)算。

      五、課堂小結(jié)

      1.這節(jié)課你學(xué)到了哪些知識(shí)和方法?

      2.你還有什么問題或想法需要和大家交流分享?

      六、課后作業(yè)布置:

      xxx

      七、課后反思

      通過洋蔥視頻輔助教學(xué),使得學(xué)生容易體會(huì)到“消元”思想的滲透,學(xué)生能夠?qū)W會(huì)規(guī)范解題。通過視頻的講解能夠準(zhǔn)確的選擇要變形的方程,如果是傳統(tǒng)的教學(xué)方式可能會(huì)出現(xiàn)很多學(xué)生不理解的地方,但通過洋蔥數(shù)學(xué)短小精辟的視頻講解一下子讓學(xué)生理解透!

    《二元一次方程組》教學(xué)設(shè)計(jì)5

      一.教學(xué)目標(biāo)

      (一)教學(xué)知識(shí)點(diǎn)

      1.代入消元法解二元一次方程組.

      2.解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想.

      (二)能力訓(xùn)練要求

      1.會(huì)用代入消元法解二元一次方程組.

      2.了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想.

      (三)情感與價(jià)值觀要求

      1.在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問題為簡單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心.

      2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.

      二.教學(xué)重點(diǎn)

      1.會(huì)用代入消元法解二元一次方程組.

      2.了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想.

      三.教學(xué)難點(diǎn)

      1.消元的思想.

      2.化未知為已知的化歸思想.

      四.教學(xué)方法

      啟發(fā)自主探索相結(jié)合.

      教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.

      五.教具準(zhǔn)備

      投影片兩張:

      第一張:例題(記作7.2 A);

      第二張:問題串(記作7.2 B).

      六.教學(xué)過程

      Ⅰ.提出疑問,引入新課

      [師生共憶]上節(jié)課我們討論過一個(gè)希望工程義演的問題;沒去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?

      [生]在上一節(jié)課的做一做中,我們通過檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個(gè)人和3個(gè)人.

      [師]但是,這個(gè)解是試出來的.我們知道二元一次方程的解有無數(shù)個(gè).難道我們每個(gè)方程組的解都去這樣試?

      [生]太麻煩啦.

      [生]不可能.

      [師]這就需要我們學(xué)習(xí)二元一次方程組的解法.

      Ⅱ.講授新課

      [師]在七年級(jí)第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過希望工程義演問題,當(dāng)時(shí)是如何解的呢?

      [生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:

      5x+3(8-x)=34

      解得x=5

      將x=5代入8-x=8-5=3

      答:成人去了5個(gè),兒童去了3個(gè).

      [師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

      [生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè).列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè).y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.

      [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程.

      [師]太好了.我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可.如何轉(zhuǎn)化呢?

      [生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.二元化成一元.

      [師]這位同學(xué)很善于思考.他用了我們?cè)跀?shù)學(xué)研究中化未知為已知的化歸思想,從而使問題得到解決.下面我們完整地解一下這個(gè)二元一次方程組.

      解:

      由①得 y=8-x ③

      將③代入②得

      5x+3(8-x)=34

      解得x=5

      把x=5代入③得y=3.

      所以原方程組的解為

      下面我們?cè)囍眠@種方法來解答上一節(jié)的誰的包裹多的問題.

      [師生共析]解二元一次方程組:

      分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.

      解:由①得x=2+y ③

      將③代入②得(2+y)+1=2(y-1)

      解得y=5

      把y=5代入③,得

      x=7.

      所以原方程組的解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹.

      [師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們?cè)賮砜磧蓚(gè)例子.

      出示投影片(7.2 A)

      [例題]解方程組

      (1)

      (2)

      (由學(xué)生自己完成,兩個(gè)同學(xué)板演).

      解:(1)將②代入①,得

      3 +2y=8

      3y+9+4y=16

      7y=7

      y=1

      將y=1代入②,得

      x=2

      所以原方程組的解是

      (2)由②,得x=13-4y ③

      將③代入①,得

      2(13-4y)+3y=16

      -5y=-10

      y=2

      將y=2代入③,得

      x=5

      所以原方程組的解是

      [師]下面我們來討論幾個(gè)問題:

      出示投影片(7.2 B)

      (1)上面解方程組的基本思路是什么?

      (2)主要步驟有哪些?

      (3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?

      (由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過程中的獨(dú)特想法)

      [生]我來回答第一問:解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?

      [生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠,把它變形為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù).

      第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒有變形的另一個(gè)方程,可得一個(gè)一元一次方程.

      第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.

      第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.

      第五步:用{把原方程組的解表示出來.

      第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立.

      [師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問題也提了出來,很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗(yàn)自己答案正確與否的習(xí)慣.

      [生]老師,我代表我們組來回答第三個(gè)問題.我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對(duì)值較小的'方程變形.但我們也有一個(gè)問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡便,有沒有更簡捷的方法呢?

      [師]這個(gè)問題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過程寫到黑板上來.

      [生]解:由②得2x=y+3 ③

     、蹆蛇呁瑫r(shí)乘以2,得

      4x=2y+6 ④

      由④得2y=4x-6

      把⑤代入①得

      3x+(4x-6)=8

      解得7x=14,x=2

      把x=2代入③得y=1.

      所以原方程組的解為

      [師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將2y整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)科學(xué)的發(fā)明.

     、.隨堂練習(xí)

      課本P192

      1.用代入消元法解下列方程組

      解:(1)

      將①代入②,得

      x+2x=12

      x=4.

      把x=4代入①,得

      y=8

      所以原方程組的解為

      (2)

      將①代入②,得

      4x+3(2x+5)=65

      解得x=5

      把x=5代入①得

      y=15

      所以原方程組的解為

      (3)

      由①,得x=11-y ③

      把③代入②,得

      11-y-y=7

      y=2

      把y=2代入③,得

      x=9

      所以原方程組的解為

      (4)

      由②,得x=3-2y ③

      把③代入①,得

      3(3-2y)-2y=9

      得y=0

      把y=0代入③,得x=3

      所以原方程組的解為

      注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過程統(tǒng)一.

     、.課時(shí)小結(jié)

      這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法.了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉?主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程的解.

     、.課后作業(yè)

      1.課本習(xí)題7.2

      2.解答習(xí)題7.2第3題

     、.活動(dòng)與探究

      已知代數(shù)式x2+px+q,當(dāng)x=-1時(shí),它的值是-5;當(dāng)x=-2時(shí),它的值是4,求p、q的值.

      過程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即

      當(dāng)x=-1時(shí),代數(shù)式的值是-5,得

      (-1)2+(-1)p+q=-5 ①

      當(dāng)x=-2時(shí),代數(shù)式的值是4,得

      (-2)2+(-2)p+q=4 ②

      將①、②兩個(gè)方程整理,并組成方程組

      解方程組,便可解決.

      結(jié)果:由④得q=2p

      把q=2p代入③,得

      -p+2p=-6

      解得p=-6

      把p=-6代入q=2p=-12

      所以p、q的值分別為-6、-12.

      七.板書設(shè)計(jì)

      7.2 解二元一次方程組(一)

      一、希望工程義演

      二、誰的包裹多問題

      三、例題

      四、解方程組的基本思路:消元即二元一元

      五、解二元一次方程組的基本步驟

    【《二元一次方程組》教學(xué)設(shè)計(jì)】相關(guān)文章:

    二元一次方程組教學(xué)設(shè)計(jì)06-05

    二元一次方程組教學(xué)設(shè)計(jì)7篇06-06

    二元一次方程組課后反思07-08

    《一次成功的實(shí)驗(yàn)》教學(xué)設(shè)計(jì)04-03

    一次有趣的觀察教學(xué)設(shè)計(jì)11-04

    《一次成功的實(shí)驗(yàn)》教學(xué)設(shè)計(jì)04-12

    《一次成功實(shí)驗(yàn)》教學(xué)設(shè)計(jì)05-19

    《第一次……》教學(xué)設(shè)計(jì)05-17

    一次比一次有進(jìn)步教學(xué)設(shè)計(jì)04-05