在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 高一函數(shù)總結(jié)

    時間:2024-04-23 18:17:26 總結(jié)范文 我要投稿

    高一函數(shù)總結(jié)

      總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)等方面情況進(jìn)行評價與描述的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不妨坐下來好好寫寫總結(jié)吧。那么你知道總結(jié)如何寫嗎?下面是小編為大家收集的高一函數(shù)總結(jié),希望對大家有所幫助。

    高一函數(shù)總結(jié)

    高一函數(shù)總結(jié)1

      sin(A+B)=sinAcosB+cosAsinB

      sin(A-B)=sinAcosB-cosAsinB?

      cos(A+B)=cosAcosB-sinAsinB

      cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)

      tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      cot(A+B)=(cotAcotB-1)/(cotB+cotA)?

      cot(A-B)=(cotAcotB+1)/(cotB-cotA)

      倍角公式

      Sin2A=2SinA?CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=2tanA/1-tanA^2

      三倍角公式

      tan3a=tana·tan(π/3+a)·tan(π/3-a)

      和差化積

      sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

      sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

      cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

      cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

      tanA+tanB=sin(A+B)/cosAcosB

      積化和差

      sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

      cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

      sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

      cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

      誘導(dǎo)公式

      sin(-a)=-sin(a)

      cos(-a)=cos(a)

      sin(π/2-a)=cos(a)

    高一函數(shù)總結(jié)2

      一、復(fù)合函數(shù)定義:設(shè)y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關(guān)于x函數(shù)的y=f[g(x)]叫做函數(shù)f與g的復(fù)合函數(shù),u叫中間量.

      二、復(fù)合函數(shù)定義域問題:

     。ㄒ唬├}剖析:

      (1)、已知f(x)的定義域,求fg(x)的定義域

      思路:設(shè)函數(shù)f(x)的定義域為D,即xD,所以f的作用范圍為D,又f對g(x)作用,作用范圍不變,所以g(x)D,解得xE,E為fg(x)的定義域。

      例1.設(shè)函數(shù)f(u)的定義域為(0,1),則函數(shù)f(lnx)的定義域為_____________。解析:函數(shù)f(u)的定義域為(0,1)即u(0,1),所以f的作用范圍為(0,1)又f對lnx作用,作用范圍不變,所以0lnx1解得x(1,e),故函數(shù)f(lnx)的定義域為(1,e)例2.若函數(shù)f(x)1x1,則函數(shù)ff(x)的定義域為______________。

      1x1解析:先求f的作用范圍,由f(x),知x1

      即f的作用范圍為xR|x1,又f對f(x)作用所以f(x)R且f(x)1,即ff(x)中x應(yīng)滿足x1即1,解得x1且x2

      1x1x1f(x)1

      故函數(shù)ff(x)的定義域為xR|x1且x2(2)、已知fg(x)的定義域,求f(x)的定義域

      思路:設(shè)fg(x)的定義域為D,即xD,由此得g(x)E,所以f的作用范圍為E,又f對x作用,作用范圍不變,所以xE,E為f(x)的定義域。

      例3.已知f(32x)的定義域為x1,2,則函數(shù)f(x)的定義域為_________。解析:f(32x)的定義域為1,2,即x1,2,由此得32x1,5所以f的作用范圍為1,5,又f對x作用,作用范圍不變,所以x1,5

      即函數(shù)f(x)的定義域為1,5

      2例4.已知f(x4)lg2x2x8,則函數(shù)f(x)的定義域為______________。

      解析:先求f的作用范圍,由f(x4)lg2x22x8,知

      x22x80

      解得x244,f的作用范圍為(4,),又f對x作用,作用范圍不變,所以x(4,),即f(x)的定義域為(4,)

      (3)、已知fg(x)的定義域,求fh(x)的定義域

      思路:設(shè)fg(x)的定義域為D,即xD,由此得g(x)E,f的作用范圍為E,又f對h(x)作用,作用范圍不變,所以h(x)E,解得xF,F(xiàn)為fh(x)的定義域。

      例5.若函數(shù)f(2x)的定義域為1,1,則f(log2x)的定義域為____________。

      1解析:f(2)的定義域為1,1,即x1,1,由此得2,2

      2xxf的作用范圍為

      1,22又f對log2x作用,所以log2x,2,解得x2即f(log2x)的定義域為

      12,4

      2,4

      評注:函數(shù)定義域是自變量x的取值范圍(用集合或區(qū)間表示)f對誰作用,則誰的范圍是f的作用范圍,f的作用對象可以變,但f的作用范圍不會變。利用這種理念求此類定義域問題會有“得來全不費(fèi)功夫”的感覺,值得大家探討。

     。ǘ┩骄毩(xí):

      21、已知函數(shù)f(x)的定義域為[0,1],求函數(shù)f(x)的定義域。

      答案:[1,1]

      2、已知函數(shù)f(32x)的定義域為[3,3],求f(x)的定義域。

      答案:[3,9]

      3、已知函數(shù)yf(x2)的定義域為(1,0),求f(|2x1|)的定義域。

      (12,0)(1,3)答案:

      2

      4、設(shè)fxlg2xx2,則ff的定義域為()

      2x2xA.4,00,4B.4,11,4C.2,11,2D.4,22,4

      x22,2x20得,f(x)的定義域為x|2x2。故解:選C.由,解得2x222.xx2x4,11,4。故ff的定義域為4,11,4

      2x5、已知函數(shù)f(x)的定義域為x([解析]由已知,有1ax3,13x,),求g(x)f(ax)f()(a0)的定義域。22a221x3,2a212x32112aa2x3232aa.,

      x(1)當(dāng)a1時,定義域為{x|(2)當(dāng)

      32a32};a2a,即0a1時,有a2x32a};

      12a2a,

      定義域為{x|(3)當(dāng)

      32a32a,即a1時,有1x32a}.12aa2a2,

      定義域為{x|2a故當(dāng)a1時,定義域為{x|xx32a32};

      當(dāng)0a1時,定義域為{x|a}.

     。埸c(diǎn)評]對于含有參數(shù)的函數(shù),求其定義域,必須對字母進(jìn)行討論,要注意思考討論字母的方法。

      三、復(fù)合函數(shù)單調(diào)性問題

     。1)引理證明已知函數(shù)yf(g(x)).若ug(x)在區(qū)間(a,b)上是減函數(shù),其值域為(c,d),又函數(shù)yf(u)在區(qū)間(c,d)上是減函數(shù),那么,原復(fù)合函數(shù)yf(g(x))在區(qū)間(a,b)上是增函數(shù).

      證明:在區(qū)間(a,b)內(nèi)任取兩個數(shù)x1,x2,使ax1x2b

      因為ug(x)在區(qū)間(a,b)上是減函數(shù),所以g(x1)g(x2),記u1g(x1),

      u2g(x2)即u1u2,且u1,u2(c,d)

      因為函數(shù)yf(u)在區(qū)間(c,d)上是減函數(shù),所以f(u1)f(u2),即f(g(x1))f(g(x2)),

      故函數(shù)yf(g(x))在區(qū)間(a,b)上是增函數(shù).(2).復(fù)合函數(shù)單調(diào)性的判斷

      復(fù)合函數(shù)的單調(diào)性是由兩個函數(shù)共同決定。為了記憶方便,我們把它們總結(jié)成一個圖表:

      yf(u)ug(x)yf(g(x))增增增減減增減減減增以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.(3)、復(fù)合函數(shù)yf(g(x))的單調(diào)性判斷步驟:確定函數(shù)的定義域;

      將復(fù)合函數(shù)分解成兩個簡單函數(shù):yf(u)與ug(x)。分別確定分解成的兩個函數(shù)的單調(diào)性;

      若兩個函數(shù)在對應(yīng)的區(qū)間上的單調(diào)性相同(即都是增函數(shù),或都是減函數(shù)),則復(fù)合后的函數(shù)yf(g(x))為增函數(shù);若兩個函數(shù)在對應(yīng)的區(qū)間上的單調(diào)性相異(即一個是增函數(shù),而另一個是減函數(shù)),則復(fù)合后的函數(shù)yf(g(x))為減函數(shù)。

     。4)例題演練例1、求函數(shù)ylog212(x2x3)的單調(diào)區(qū)間,并用單調(diào)定義給予證明2解:定義域x2x30x3或x1

      單調(diào)減區(qū)間是(3,)設(shè)x1,x2(3,)且x1x2則

      y1log2(x12x13)y2log122(x22x23)122(x12x13)(x22x23)=(x2x1)(x2x12)

      2∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底數(shù)0∴y2y10即y2y1∴y在(3,)上是減函數(shù)22121

      同理可證:y在(,1)上是增函數(shù)[例]2、討論函數(shù)f(x)loga(3x22x1)的單調(diào)性.[解]由3x22x10得函數(shù)的定義域為

      1{x|x1,或x}.

      3則當(dāng)a1時,若x1,∵u3x22x1為增函數(shù),∴f(x)loga(3x22x1)為增函數(shù).

      若x13,∵u3x22x1為減函數(shù).

      ∴f(x)loga(3x22x1)為減函數(shù)。

      當(dāng)0a1時,若x1,則f(x)loga(3x22x1)為減函數(shù),若xf(x)loga(3x22x1)為增函數(shù).

      13,則

      例3、.已知y=loga(2-a)在[0,1]上是x的減函數(shù),求a的取值范圍.解:∵a>0且a≠1

      當(dāng)a>1時,函數(shù)t=2-a>0是減函數(shù)

      由y=loga(2-a)在[0,1]上x的減函數(shù),知y=logat是增函數(shù),∴a>1

      由x[0,1]時,2-a2-a>0,得a<2,∴1<a<2

      當(dāng)0例4、已知函數(shù)f(x2)ax2(a3)xa2(a為負(fù)整數(shù))的圖象經(jīng)過點(diǎn)

      (m2,0),mR,設(shè)g(x)f[f(x)],F(x)pg(x)f(x).問是否存在實數(shù)p(p0)使得

      F(x)在區(qū)間(,f(2)]上是減函數(shù),且在區(qū)間(f(2),0)上是減函數(shù)?并證明你的結(jié)論。

     。劢馕觯萦梢阎猣(m2)0,得am2(a3)ma20,其中mR,a0.∴0即3a22a90,解得

      1273a1273.

      ∵a為負(fù)整數(shù),∴a1.

      ∴f(x2)x4x3(x2)21,

      2242即f(x)x21.g(x)f[f(x)](x1)1x2x,

      ∴F(x)pg(x)f(x)px4(2p1)x21.

      假設(shè)存在實數(shù)p(p0),使得F(x)滿足條件,設(shè)x1x2,

      22)[p(x12x2)2p1].∴F(x1)F(x2)(x12x2∵f(2)3,當(dāng)x1,x2(,3)時,F(xiàn)(x)為減函數(shù),

      220,p(x12x2)2p10.∴F(x1)F(x2)0,∴x12x2218,∵x13,x23,∴x12x22)2p116p1,∴p(x12x2∴16p10.①

      當(dāng)x1,x2(3,0)時,F(x)增函數(shù),∴F(x1)F(x2)0.

      220,∴p(x12x2)2p116p1,∵x12x2∴16p10.由①、②可知p116②

      ,故存在p116.

     。5)同步練習(xí):

      1.函數(shù)y=logA.(-∞,1)C.(-∞,

      3212(x2-3x+2)的單調(diào)遞減區(qū)間是()

      B.(2,+∞)D.(

      32),+∞)

      解析:先求函數(shù)定義域為(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函數(shù)t(x)

      在(-∞,1)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,根據(jù)復(fù)合函數(shù)同增異減的原則,函數(shù)y=log12(x2-3x+2)在(2,+∞)上單調(diào)遞減.

      答案:B

      2找出下列函數(shù)的單調(diào)區(qū)間.

     。1)yax(2)y223x2(a1);.

      x22x3答案:(1)在(,]上是增函數(shù),在[,)上是減函數(shù)。

      2233(2)單調(diào)增區(qū)間是[1,1],減區(qū)間是[1,3]。

      3、討論yloga(a1),(a0,且a0)的單調(diào)性。

      答案:a1,時(0,)為增函數(shù),1a0時,(,0)為增函數(shù)。4.求函數(shù)y=log13x(x2-5x+4)的定義域、值域和單調(diào)區(qū)間.

      解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),當(dāng)x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函數(shù)的值域是R.因

     。

      為函數(shù)y=log13(x2-5x+4)是由y=log13(x)與(x)=x2-5x+4復(fù)合而成,函

      52數(shù)y=log13(x)在其定義域上是單調(diào)遞減的,函數(shù)(x)=x2-5x+4在(-∞,

     。

      上為減函數(shù),在[

      52,+∞]上為增函數(shù).考慮到函數(shù)的定義域及復(fù)合函數(shù)單調(diào)性,y=log13(x2-5x+4)的增區(qū)間是定義域內(nèi)使y=log13(x)為減函數(shù)、(x)=x2-5x+4也

      為減函數(shù)的區(qū)間,即(-∞,1);y=log1(x2-5x+4)的減區(qū)間是定義域內(nèi)使y=log313(x)為減函數(shù)、(x)=x2-5x+4為增函數(shù)的區(qū)間,即(4,+∞).

      變式練習(xí)一、選擇題

      1.函數(shù)f(x)=log

      A.(1,+∞)C.(-∞,2)

      12(x-1)的定義域是()

      B.(2,+∞)

      2]D.(1,解析:要保證真數(shù)大于0,還要保證偶次根式下的式子大于等于0,

      x-1>0所以log(x-1)120解得1<x≤2.

      答案:D2.函數(shù)y=log

      12(x2-3x+2)的單調(diào)遞減區(qū)間是()

      B.(2,+∞)D.(

      32A.(-∞,1)C.(-∞,

      32),+∞)

      解析:先求函數(shù)定義域為(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函數(shù)t(x)在(-∞,1)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,根據(jù)復(fù)合函數(shù)同增異減的原則,函數(shù)y=log12(x2-3x+2)在(2,+∞)上單調(diào)遞減.

      答案:B

      3.若2lg(x-2y)=lgx+lgy,則

      A.4

      yx的值為()B.1或D.

      1414

      C.1或4

      yx錯解:由2lg(x-2y)=lgx+lgy,得(x-2y)2=xy,解得x=4y或x=y(tǒng),則有

      14=或

      xy=1.

      答案:選B

      正解:上述解法忽略了真數(shù)大于0這個條件,即x-2y>0,所以x>2y.所以x=y(tǒng)舍掉.只有x=4y.答案:D

      4.若定義在區(qū)間(-1,0)內(nèi)的函數(shù)f(x)=log的取值范圍為()

      A.(0,C.(

      12122a(x+1)滿足f(x)>0,則a

      )

      B.(0,1)D.(0,+∞)

      ,+∞)

      解析:因為x∈(-1,0),所以x+1∈(0,1).當(dāng)f(x)>0時,根據(jù)圖象只有0<

      2a<l,解得0<a<答案:A

      12(根據(jù)本節(jié)思維過程中第四條提到的性質(zhì)).

      5.函數(shù)y=lg(

      21-x-1)的圖象關(guān)于()

      1+x1-xA.y軸對稱C.原點(diǎn)對稱

      21-x

      B.x軸對稱D.直線y=x對稱

      1+x1-x解析:y=lg(

     。1)=lg,所以為奇函數(shù).形如y=lg或y=lg1+x1-x的函數(shù)都為奇函數(shù).答案:C二、填空題

      已知y=loga(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是__________.解析:a>0且a≠1(x)=2-ax是減函數(shù),要使y=loga(2-ax)是減函數(shù),則a>1,又2-ax>0a<答案:a∈(1,2)

      7.函數(shù)f(x)的圖象與g(x)=(的'單調(diào)遞減區(qū)間為______.

      解析:因為f(x)與g(x)互為反函數(shù),所以f(x)=log則f(2x-x2)=log132x(0<x<1)a<2,所以a∈(1,2).

      13)的圖象關(guān)于直線y=x對稱,則f(2x-x2)

      xx

      13(2x-x2),令(x)=2x-x2>0,解得0<x<2.

     。▁)=2x-x2在(0,1)上單調(diào)遞增,則f[(x)]在(0,1)上單調(diào)遞減;(x)=2x-x2在(1,2)上單調(diào)遞減,則f[(x)]在[1,2)上單調(diào)遞增.所以f(2x-x2)的單調(diào)遞減區(qū)間為(0,1).答案:(0,1)

      8.已知定義域為R的偶函數(shù)f(x)在[0,+∞]上是增函數(shù),且f(則不等式f(log4x)>0的解集是______.解析:因為f(x)是偶函數(shù),所以f(-

      1212)=0,

     。絝(

      12)=0.又f(x)在[0,+∞]

      12上是增函數(shù),所以f(x)在(-∞,0)上是減函數(shù).所以f(log4x)>0log4x>

      9

      或log4x<-

      12.

      12解得x>2或0<x<

     。

      12答案:x>2或0<x<三、解答題9.求函數(shù)y=log13

     。▁2-5x+4)的定義域、值域和單調(diào)區(qū)間.

      解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),當(dāng)x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函數(shù)的值域是R

     。

      .因為函數(shù)y=log1(x2-5x+4)是由y=log313(x)與(x)=x2-5x+4復(fù)合而成,

      52函數(shù)y=log13(x)在其定義域上是單調(diào)遞減的,函數(shù)(x)=x2-5x+4在(-∞,

     。

      上為減函數(shù),在[

      52,+∞]上為增函數(shù).考慮到函數(shù)的定義域及復(fù)合函數(shù)單調(diào)性,y=log13(x2-5x+4)的增區(qū)間是定義域內(nèi)使y=log13(x)為減函數(shù)、(x)=x2-5x+4也

      為減函數(shù)的區(qū)間,即(-∞,1);y=log1(x2-5x+4)的減區(qū)間是定義域內(nèi)使y=log313(x)為減函數(shù)、(x)=x2-5x+4為增函數(shù)的區(qū)間,即(4,+∞).10.設(shè)函數(shù)f(x)=

      23x+5+lg3-2x3+2x,

     。1)求函數(shù)f(x)的定義域;

     。2)判斷函數(shù)f(x)的單調(diào)性,并給出證明;

     。3)已知函數(shù)f(x)的反函數(shù)f1(x),問函數(shù)y=f1(x)的圖象與x軸有交點(diǎn)嗎?

     。

      若有,求出交點(diǎn)坐標(biāo);若無交點(diǎn),說明理由.解:(1)由3x+5≠0且<

      323-2x3+2x>0,解得x≠-

      53且-

      32<x<

      32.取交集得-

      32<x

      .

      2(2)令(x)=

      3-2x3+2x=-1+

      3x+56,隨著x增大,函數(shù)值減小,所以在定義域內(nèi)是減函數(shù);

      3+2x隨著x增大,函數(shù)值減小,所以在定義域內(nèi)是減函數(shù).

      又y=lgx在定義域內(nèi)是增函數(shù),根據(jù)復(fù)合單調(diào)性可知,y=lg(x)=

      23x+53-2x3+2x是減函數(shù),所以f

     。玪g3-2x3+2x是減函數(shù).

     。3)因為直接求f(x)的反函數(shù)非常復(fù)雜且不易求出,于是利用函數(shù)與其反函數(shù)之間定義域與值域的關(guān)系求解.

      設(shè)函數(shù)f(x)的反函數(shù)f1(x)與工軸的交點(diǎn)為(x0,0).根據(jù)函數(shù)與反函數(shù)之間定義

      -

      域與值域的關(guān)系可知,f(x)與y軸的交點(diǎn)是(0,x0),將(0,x0)代入f(x),解得x0=

      一.指數(shù)函數(shù)與對數(shù)函數(shù)

     。椎闹笖(shù)函數(shù)yax與對數(shù)函數(shù)ylogax互為反函數(shù);

     。ǘ┲饕椒ǎ

      1.解決與對數(shù)函數(shù)有關(guān)的問題,要特別重視定義域;

      2.指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性決定于底數(shù)大于1還是小于1,要注意對底數(shù)的討論;3.比較幾個數(shù)的大小的常用方法有:①以0和1為橋梁;②利用函數(shù)的單調(diào)性;③作差.(三)例題分析:

      2例1.(1)若aba1,則logbxyz(2)若23525.所以函數(shù)y=f1(x)的圖象與x軸有交點(diǎn),交點(diǎn)為(

     。

      25,0)。

      ba,logba,logab從小到大依次為;

      z都是正數(shù),,且x,則2x,y,3y,5z從小到大依次為;

      xx(3)設(shè)x0,且ab1(a0,b0),則a與b的大小關(guān)系是()

     。ˋ)ba1(B)ab1(C)1ba(D)1ab

      2解:(1)由aba1得

      baa,故logbbxyz(2)令235t,則t1,xalgtlogba1logab.

      lg2,ylgtlg3,zlgtlg5,

      ∴2x3y2lgtlg23lgtlg3lgt(lg9lg8)lg2lg30,∴2x3y;

      同理可得:2x5z0,∴2x5z,∴3y2x5z.(3)取x1,知選(B).例2.已知函數(shù)f(x)ax(a1),

      x1求證:(1)函數(shù)f(x)在(1,)上為增函數(shù);(2)方程f(x)0沒有負(fù)數(shù)根.

      x2證明:(1)設(shè)1x1x2,則f(x1)f(x2)aax1x12x11x2ax2x22x21

      ax1x1ax12x11x22x21ax23(x1x2)(x11)(x21),

      ∵1x1x2,∴x110,x210,x1x20,∴

      3(x1x2)(x11)(x21)0;

      ∵1x1x2,且a1,∴ax1ax2,∴aax1x20,

      ∴f(x1)f(x2)0,即f(x1)f(x2),∴函數(shù)f(x)在(1,)上為增函數(shù);(2)假設(shè)x0是方程f(x)0的負(fù)數(shù)根,且x01,則a即ax0x0x02x010,

      2x0x013(x01)x013x011,①3x013,∴

      3x0112,而由a1知ax0當(dāng)1x00時,0x011,∴∴①式不成立;

      當(dāng)x01時,x010,∴

      3x011,

      0,∴

      3x0111,而ax00,

      ∴①式不成立.

      綜上所述,方程f(x)0沒有負(fù)數(shù)根.

      例3.已知函數(shù)f(x)loga(ax1)(a0且a1).求證:(1)函數(shù)f(x)的圖象在y軸的一側(cè);

     。2)函數(shù)f(x)圖象上任意兩點(diǎn)連線的斜率都大于0.

      證明:(1)由a10得:a1,

      ∴當(dāng)a1時,x0,即函數(shù)f(x)的定義域為(0,),此時函數(shù)f(x)的圖象在y軸的右側(cè);

      當(dāng)0a1時,x0,即函數(shù)f(x)的定義域為(,0),此時函數(shù)f(x)的圖象在y軸的左側(cè).

      ∴函數(shù)f(x)的圖象在y軸的一側(cè);

     。2)設(shè)A(x1,y1)、B(x2,y2)是函數(shù)f(x)圖象上任意兩點(diǎn),且x1x2,則直線AB的斜率ky1y2x1x2x1x2xx,y1y2loga(a1)loga(ax1x1x21)logax2aa11,

      當(dāng)a1時,由(1)知0x1x2,∴1a∴0aax1x2ax2,∴0a1ax11,

      111,∴y1y20,又x1x20,∴k0;

      x1當(dāng)0a1時,由(1)知x1x20,∴a∴

      ax1x2ax21,∴ax11ax210,

      1,∴y1y20,又x1x20,∴k0.1∴函數(shù)f(x)圖象上任意兩點(diǎn)連線的斜率都大于0.

      a1

    高一函數(shù)總結(jié)3

      本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點(diǎn),函數(shù)的圖象就迎刃而解了。

      一、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義

      2、函數(shù)單調(diào)性的判斷和證明:

      (1)定義法

      (2)復(fù)合函數(shù)分析法

      (3)導(dǎo)數(shù)證明法

      (4)圖象法

      二、函數(shù)的奇偶性和周期性

      1、函數(shù)的奇偶性和周期性的定義

      2、函數(shù)的奇偶性的判定和證明方法

      3、函數(shù)的周期性的判定方法

      三、函數(shù)的圖象

      1、函數(shù)圖象的作法

      (1)描點(diǎn)法

      (2)圖象變換法

      2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

      常見考法

      本節(jié)是段考和高考必不可少的.考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

      誤區(qū)提醒

      1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

      2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

      3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

      4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。

      5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

    高一函數(shù)總結(jié)4

      一:函數(shù)及其表示

      知識點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

      1.函數(shù)與映射的區(qū)別:

      2.求函數(shù)定義域

      常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

     、佼(dāng)f(x)為整式時,函數(shù)的定義域為R.

     、诋(dāng)f(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。

      ③當(dāng)f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。

     、墚(dāng)f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。

     、萑绻鹒(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。

     、迯(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

     、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。

      3.求函數(shù)值域

      (1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

      (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

      (3)、判別式法:

      (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

      (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的.函數(shù)形式,進(jìn)而求出值域;

      (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;

      (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

      (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

      (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

    高一函數(shù)總結(jié)5

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

      (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的`單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

    高一函數(shù)總結(jié)6

      (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的'方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學(xué);

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱。

    高一函數(shù)總結(jié)7

      【(一)、映射、函數(shù)、反函數(shù)】

      1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.

      2、對于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

      (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

      (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.

      (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

      3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

      (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

      (2)由y=f(x)的解析式求出x=f-1(y);

      (3)將x,y對換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

      注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

     、谑煜さ膽(yīng)用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運(yùn)算.

      【(二)、函數(shù)的解析式與定義域】

      1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

      (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;

      (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

      ①分式的分母不得為零;

     、谂即蝬xx的被開方數(shù)不小于零;

      ③對數(shù)函數(shù)的真數(shù)必須大于零;

     、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

     、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

      應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

      (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.

      已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

      2、求函數(shù)的解析式一般有四種情況

      (1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式.

      (2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

      (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時,可用換元法求函數(shù)f(x)的表達(dá)式,這時必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

      (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

      【(三)、函數(shù)的值域與最值】

      1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

      (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

      (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元.

      (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

      (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

      (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.

      (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

      (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

      (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

      2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

      求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

      如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

      3、函數(shù)的最值在實際問題中的應(yīng)用

      函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.

      【(四)、函數(shù)的奇偶性】

      1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

      正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

      2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:

      注意如下結(jié)論的運(yùn)用:

      (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

      (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

      (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

      (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

      3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論

      (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.

      (2)如要函數(shù)的.定義域關(guān)于原點(diǎn)對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

      (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

      (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對稱區(qū)間上的單調(diào)性是相同(反)的。

      (5)若f(x)的定義域關(guān)于原點(diǎn)對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

      (6)奇偶性的推廣

      函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。

      【(五)、函數(shù)的單調(diào)性】

      1、單調(diào)函數(shù)

      對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).

      對于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

      (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.

      (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.

      (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).

      (4)注意定義的兩種等價形式:

      設(shè)x1、x2∈[a,b],那么:

     、僭赱a、b]上是增函數(shù);

      在[a、b]上是減函數(shù).

     、谠赱a、b]上是增函數(shù).

      在[a、b]上是減函數(shù).

      需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

      (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.

      5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

      若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡稱“同增、異減”.

      在研究函數(shù)的單調(diào)性時,常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程.

      6、證明函數(shù)的單調(diào)性的方法

      (1)依定義進(jìn)行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.

      (2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo).

      如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

      【(六)、函數(shù)的圖象】

      函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識.

      求作圖象的函數(shù)表達(dá)式

      與f(x)的關(guān)系

      由f(x)的圖象需經(jīng)過的變換

      y=f(x)±b(b>0)

      沿y軸向平移b個單位

      y=f(x±a)(a>0)

      沿x軸向平移a個單位

      y=-f(x)

      作關(guān)于x軸的對稱圖形

      y=f(|x|)

      右不動、左右關(guān)于y軸對稱

      y=|f(x)|

      上不動、下沿x軸翻折

      y=f-1(x)

      作關(guān)于直線y=x的對稱圖形

      y=f(ax)(a>0)

      橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變

      y=af(x)

      縱坐標(biāo)伸長到原來的|a|倍,橫坐標(biāo)不變

      y=f(-x)

      作關(guān)于y軸對稱的圖形

      【例】定義在實數(shù)集上的函數(shù)f(x),對xxx,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

     、偾笞C:f(0)=1;

     、谇笞C:y=f(x)是偶函數(shù);

     、廴舸嬖诔(shù)c,使求證對xxx∈R,有f(x+c)=-f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由.

      思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法.

      解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

      ②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數(shù).

     、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

      所以,所以f(x+c)=-f(x).

      兩邊應(yīng)用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個周期.

    高一函數(shù)總結(jié)8

      一、函數(shù)的概念與表示

      1、映射

      (1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

      注意點(diǎn):(1)對映射定義的理解。(2)判斷一個對應(yīng)是映射的方法。一對多不是映射,多對一是映射

      2、函數(shù)

      構(gòu)成函數(shù)概念的三要素

      ①定義域②對應(yīng)法則③值域

      兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

      二、函數(shù)的解析式與定義域

      1、求函數(shù)定義域的主要依據(jù):

      (1)分式的.分母不為零;

      (2)偶次xxx的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

      (3)對數(shù)函數(shù)的真數(shù)必須大于零;

      (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      三、函數(shù)的值域

      1求函數(shù)值域的方法

     、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

      ②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

      ③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

      ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

     、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

     、迗D象法:二次函數(shù)必畫草圖求其值域;

      ⑦利用對號函數(shù)

     、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

      四.函數(shù)的奇偶性

      1.定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

      如果對于任意∈A,都有,則稱y=f(x)為奇

      函數(shù)。

      2.性質(zhì):

     、賧=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(0)=0

      ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱]

      3.奇偶性的判斷

      ①看定義域是否關(guān)于原點(diǎn)對稱②看f(x)與f(-x)的關(guān)系

      五、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義:

      2、設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

    高一函數(shù)總結(jié)9

      高一數(shù)學(xué)第三章函數(shù)的應(yīng)用知識點(diǎn)總結(jié)

      一、方程的根與函數(shù)的零點(diǎn)

      1、函數(shù)零點(diǎn)的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實數(shù)根,亦即函數(shù)

      yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

      即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

      3、函數(shù)零點(diǎn)的求法:

      1(代數(shù)法)求方程f(x)0的實數(shù)根;○

      2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

      聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

      零點(diǎn)存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數(shù)單調(diào)性,然后證明是否有f(a)f(b)第三章函數(shù)的應(yīng)用習(xí)題

      一、選擇題

      1.下列函數(shù)有2個零點(diǎn)的是()

      222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內(nèi)的根的過程中得:f(1)0,f(1.5)0,

      f(1.25)0,則方程的根落在區(qū)間()

      A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

      3.若方程axxa0有兩個解,則實數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

      4.函數(shù)f(x)=lnx-2x的零點(diǎn)所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

      5.已知方程x3x10僅有一個正零點(diǎn),則此零點(diǎn)所在的區(qū)間是()

      A.(3,4)B.(2,3)C.(1,2)D.(0,1)

      6.函數(shù)f(x)lnx2x6的零點(diǎn)落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

      7.已知函數(shù)

      fx的圖象是不間斷的,并有如下的對應(yīng)值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點(diǎn)至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

      9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

      10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實數(shù)解的.是()

      )

     。ǎ

     。ǎ

     。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()

      xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

      x12x根的個數(shù)為()

      A、0B、1C、2D、3二、填空題

      13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點(diǎn)的函數(shù)的序號是。

      x214.若方程3x2的實根在區(qū)間m,n內(nèi),且m,nZ,nm1,

      x則mn.

      222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(shù)(必須寫全所有的零點(diǎn))。

      擴(kuò)展閱讀:高中數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識點(diǎn)總結(jié)

      第三章函數(shù)的應(yīng)用

      一、方程的根與函數(shù)的零點(diǎn)

      1、函數(shù)零點(diǎn)的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實數(shù)根,亦即函數(shù)

      yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

      即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

      3、函數(shù)零點(diǎn)的求法:

      1(代數(shù)法)求方程f(x)0的實數(shù)根;○

      2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

      并利用函數(shù)的性質(zhì)找出零點(diǎn).

      4、基本初等函數(shù)的零點(diǎn):

     、僬壤瘮(shù)ykx(k0)僅有一個零點(diǎn)。

      k(k0)沒有零點(diǎn)。x③一次函數(shù)ykxb(k0)僅有一個零點(diǎn)。

      ②反比例函數(shù)y④二次函數(shù)yax2bxc(a0).

     。1)△>0,方程ax2bxc0(a0)有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn).

     。2)△=0,方程ax2bxc0(a0)有兩相等實根,二次函數(shù)的圖象與x軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn).

     。3)△<0,方程ax2bxc0(a0)無實根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).

     、葜笖(shù)函數(shù)ya(a0,且a1)沒有零點(diǎn)。⑥對數(shù)函數(shù)ylogax(a0,且a1)僅有一個零點(diǎn)1.

     、邇绾瘮(shù)yx,當(dāng)n0時,僅有一個零點(diǎn)0,當(dāng)n0時,沒有零點(diǎn)。

      5、非基本初等函數(shù)(不可直接求出零點(diǎn)的較復(fù)雜的函數(shù)),函數(shù)先把fx轉(zhuǎn)化成,這另fx0,再把復(fù)雜的函數(shù)拆分成兩個我們常見的函數(shù)y1,y2(基本初等函數(shù))個函數(shù)圖像的交點(diǎn)個數(shù)就是函數(shù)fx零點(diǎn)的個數(shù)。

      6、選擇題判斷區(qū)間a,b上是否含有零點(diǎn),只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內(nèi)是否有實數(shù)解?并說明理由。

      1

      42x7、確定零點(diǎn)在某區(qū)間a,b個數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調(diào)。Eg:求函數(shù)f(x)2xlg(x1)2的零點(diǎn)個數(shù)。

      8、函數(shù)零點(diǎn)的性質(zhì):

      從“數(shù)”的角度看:即是使f(x)0的實數(shù);

      從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo);

      若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱為不變號零點(diǎn);若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱為變號零點(diǎn).

      Eg:一元二次方程根的分布討論

      一元二次方程根的分布的基本類型

      2axbxc0(a0)的兩實根為x1,x2,且x1x2.設(shè)一元二次方程

      k為常數(shù),則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區(qū)間上的

      分布主要有以下基本類型:

      表一:(兩根與0的大小比較)

      分布情況兩個負(fù)根即兩根都小于0兩個正根即兩根都大于0一正根一負(fù)根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結(jié)論0b02af000b02af00f00

      大致圖象(a0)得出的結(jié)論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結(jié)a論)

      af00表二:(兩根與k的大小比較)

      分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結(jié)論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結(jié)論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結(jié)a論)a0)afk0分布情況大致圖象(得出的結(jié)論表三:(根在區(qū)間上的分布)

      兩根都在m,n內(nèi)兩根有且僅有一根在m,n一根在m,n內(nèi),另一根在p,q內(nèi)(有兩種情況,只畫了一種)內(nèi),mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

      大致圖象(a0)得出的結(jié)論0fm0fn0bmn2a綜合結(jié)論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

      fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個實根,且一個大于1,一個小于1,求m的取值范圍?

     。2)關(guān)于x的方程x2(m3)x2m140有兩實根在[0,4]內(nèi),求m的取值范圍?

      2(3)關(guān)于x的方程mx2(m3)x2m140有兩個實根,且一個大于4,一個小于4,求m的取值范圍?

      9、二分法的定義

      對于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

      yf(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,

      使區(qū)間的兩個端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.

      10、給定精確度ε,用二分法求函數(shù)f(x)零點(diǎn)近似值的步驟:(1)確定區(qū)間[a,b],驗證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點(diǎn)x1;(3)計算f(x1):

     、偃鬴(x1)=0,則x1就是函數(shù)的零點(diǎn);

     、谌鬴(a)f(x1)14、根據(jù)散點(diǎn)圖設(shè)想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

      指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

      利用待定系數(shù)法求出各解析式,并對各模型進(jìn)行分析評價,選出合適的函數(shù)模型

    高一函數(shù)總結(jié)10

      一、復(fù)合函數(shù)定義:設(shè)y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關(guān)于x函數(shù)的y=f[g(x)]叫做函數(shù)f與g的復(fù)合函數(shù),u叫中間量.

      二、復(fù)合函數(shù)定義域問題:(一)例題剖析:

      (1)、已知f(x)的定義域,求fg(x)的定義域

      思路:設(shè)函數(shù)f(x)的定義域為D,即xD,所以f的作用范圍為D,又f對g(x)作用,作用范圍不變,所以g(x)D,解得xE,E為fg(x)的定義域。

      例1.設(shè)函數(shù)f(u)的定義域為(0,1),則函數(shù)f(lnx)的定義域為_____________。解析:函數(shù)f(u)的定義域為(0,1)即u(0,1),所以f的`作用范圍為(0,1)又f對lnx作用,作用范圍不變,所以0lnx1解得x(1,e),故函數(shù)f(lnx)的定義域為(1,e)

      1,則函數(shù)ff(x)的定義域為______________。x11解析:先求f的作用范圍,由f(x),知x1

      x1例2.若函數(shù)f(x)即f的作用范圍為xR|x1,又f對f(x)作用所以f(x)R且f(x)1,即ff(x)中x應(yīng)滿足x1

      f(x)1x1即1,解得x1且x2

      1x1故函數(shù)ff(x)的定義域為xR|x1且x2(2)、已知fg(x)的定義域,求f(x)的定義域

      思路:設(shè)fg(x)的定義域為D,即xD,由此得g(x)E,所以f的作用范圍為E,又f對x作用,作用范圍不變,所以xE,E為f(x)的定義域。

      例3.已知f(32x)的定義域為x1,2,則函數(shù)f(x)的定義域為_________。解析:f(32x)的定義域為1,2,即x1,2,由此得32x1,5所以f的作用范圍為1,5,又f對x作用,作用范圍不變,所以x1,5

      即函數(shù)f(x)的定義域為1,5

      x2例4.已知f(x4)lg2,則函數(shù)f(x)的定義域為______________。

      x82x2x20解析:先求f的作用范圍,由f(x4)lg2,知2x8x82解得x44,f的作用范圍為(4,),又f對x作用,作用范圍不變,所以

      2x(4,),即f(x)的定義域為(4,)

     。3)、已知fg(x)的定義域,求fh(x)的定義域

      思路:設(shè)fg(x)的定義域為D,即xD,由此得g(x)E,f的作用范圍為E,又f對h(x)作用,作用范圍不變,所以h(x)E,解得xF,F(xiàn)為fh(x)的定義域。

      例5.若函數(shù)f(2x)的定義域為1,1,則f(log2x)的定義域為____________。

      解析:f(2)的定義域為1,1,即x1,1,由此得2,2

      2xx11f的作用范圍為,2

      21又f對log2x作用,所以log2x,2,解得x2即f(log2x)的定義域為

      2,4

      2,4

      評注:函數(shù)定義域是自變量x的取值范圍(用集合或區(qū)間表示)f對誰作用,則誰的范圍是f的作用范圍,f的作用對象可以變,但f的作用范圍不會變。利用這種理念求此類定義域問題會有“得來全不費(fèi)功夫”的感覺,值得大家探討。

      三、復(fù)合函數(shù)單調(diào)性問題

      (1)引理證明已知函數(shù)yf(g(x)).若ug(x)在區(qū)間(a,b)上是減函數(shù),其值域為(c,d),又函數(shù)yf(u)在區(qū)間(c,d)上是減函數(shù),那么,原復(fù)合函數(shù)yf(g(x))在區(qū)間(a,b)上是增函數(shù).

      證明:在區(qū)間(a,b)內(nèi)任取兩個數(shù)x1,x2,使ax1x2b

      因為ug(x)在區(qū)間(a,b)上是減函數(shù),所以g(x1)g(x2),記u1g(x1),

      u2g(x2)即u1u2,且u1,u2(c,d)

      因為函數(shù)yf(u)在區(qū)間(c,d)上是減函數(shù),所以f(u1)f(u2),即

      f(g(x1))f(g(x2)),

      故函數(shù)yf(g(x))在區(qū)間(a,b)上是增函數(shù).(2).復(fù)合函數(shù)單調(diào)性的判斷

      復(fù)合函數(shù)的單調(diào)性是由兩個函數(shù)共同決定。為了記憶方便,我們把它們總結(jié)成一個圖表:

      yf(u)ug(x)yf(g(x))增增增減減增減減減增以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.(3)、復(fù)合函數(shù)yf(g(x))的單調(diào)性判斷步驟:確定函數(shù)的定義域;

      將復(fù)合函數(shù)分解成兩個簡單函數(shù):yf(u)與ug(x)。分別確定分解成的兩個函數(shù)的單調(diào)性;

      若兩個函數(shù)在對應(yīng)的區(qū)間上的單調(diào)性相同(即都是增函數(shù),或都是減函數(shù)),則復(fù)合后的函數(shù)yf(g(x))為增函數(shù);若兩個函數(shù)在對應(yīng)的區(qū)間上的單調(diào)性相異(即一個是增函數(shù),而另一個是減函數(shù)),則復(fù)合后的函數(shù)yf(g(x))為減函數(shù)。

     。4)例題演練

      例1、求函數(shù)ylog1(x2x3)的單調(diào)區(qū)間,并用單調(diào)定義給予證明22解:定義域x2x30x3或x1

      單調(diào)減區(qū)間是(3,)設(shè)x1,x2(3,)且x1x2則

      y1log1(x12x13)y2log1(x22x23)

      2222(x12x13)(x22x23)=(x2x1)(x2x12)

      ∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底數(shù)0∴y2y10即y2y1∴y在(3,)上是減函數(shù)2222112同理可證:y在(,1)上是增函數(shù)

    【高一函數(shù)總結(jié)】相關(guān)文章:

    高一數(shù)學(xué)函數(shù)知識總結(jié)11-20

    高一數(shù)學(xué)函數(shù)知識總結(jié)11-22

    高一數(shù)學(xué)函數(shù)知識總結(jié)6篇11-22

    高一數(shù)學(xué)函數(shù)知識總結(jié)(6篇)11-22

    高一數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)12-01

    高一數(shù)學(xué)冪函數(shù)知識點(diǎn)總結(jié)07-03

    總結(jié)高一數(shù)學(xué)函數(shù)的知識點(diǎn)大全06-25

    高一數(shù)學(xué)函數(shù)與方程知識點(diǎn)總結(jié)06-25

    高一數(shù)學(xué)函數(shù)圖像知識點(diǎn)總結(jié)06-26

    函數(shù)定義域 函數(shù)值域高一數(shù)學(xué)知識點(diǎn)總結(jié)06-25