數(shù)學(xué)解題技巧
數(shù)學(xué)解題技巧1
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)《幾何》篇
初中幾何公式:線
1.同角或等角的余角相等
2.過一點(diǎn)有且只有一條直線和已知直線垂直
3.過兩點(diǎn)有且只有一條直線
4.兩點(diǎn)之間線段最短
5.同角或等角的補(bǔ)角相等
6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7.平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
初中幾何公式:角
9.同位角相等,兩直線平行
10.內(nèi)錯(cuò)角相等,兩直線平行
11.同旁內(nèi)角互補(bǔ),兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內(nèi)錯(cuò)角相等
14.兩直線平行,同旁內(nèi)角互補(bǔ)
初中幾何公式:三角形
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18.推論1直角三角形的兩個(gè)銳角互余
19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22.邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23.角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24.推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25.邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26.斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27.定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
初一年級(jí)數(shù)學(xué)公式:常用的幾何公式
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的`標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c'.h
正棱錐側(cè)面積S=1/2c.h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi.r2
圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l
弧長(zhǎng)公式l=a.r a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2.l.r
錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s.h圓柱體V=pi.r2h
小升初數(shù)學(xué)幾何易錯(cuò)知識(shí)匯總
線、角
1.直線沒有端點(diǎn),沒有長(zhǎng)度,可以無(wú)限延伸。
2.射線只有一個(gè)端點(diǎn),沒有長(zhǎng)度,射線可以無(wú)限延伸,并且射線有方向。
3.在一條直線上的一個(gè)點(diǎn)可以引出兩條射線。
4.線段有兩個(gè)端點(diǎn),可以測(cè)量長(zhǎng)度。圓的半徑、直徑都是線段。
5.角的兩邊是射線,角的大小與射線的長(zhǎng)度沒有關(guān)系,而是跟角的兩邊叉開的大小有關(guān),叉得越大角就越大。
6.幾個(gè)易錯(cuò)的角邊關(guān)系:
(1)平角的兩邊是射線,平角不是直線。
(2)三角形、四邊形中的角的兩邊是線段。
(3)圓心角的兩邊是線段。
7.兩條直線相交成直角時(shí),這兩條直線叫做互相垂直。其中一條直線叫做另一條直線的垂線,這兩條直線的交點(diǎn)叫做垂足。
8.從直線外一點(diǎn)到這條直線所畫的垂直線段的長(zhǎng)度叫做點(diǎn)到直線的距離。
9.在同一個(gè)平面上不相交的兩條直線叫做平行線。
三角形
1.任何三角形內(nèi)角和都是180度。
2.三角形具有穩(wěn)定的特性,三角形兩邊之和大于第三邊,三角形兩邊之差小于第三邊。
3.任何三角形都有三條高。
4.直角三角形兩個(gè)銳角的和是90度。
5.兩個(gè)三角形等底等高,則它們面積相等。
6.面積相等的兩個(gè)三角形,形狀不一定相同。
正方形面積
1.正方形面積:邊長(zhǎng)×邊長(zhǎng)
2.正方形面積:兩條對(duì)角線長(zhǎng)度的積÷2
三角形、四邊形的關(guān)系
1.兩個(gè)完全一樣的三角形能組成一個(gè)平行四邊形。
2.兩個(gè)完全一樣的直角三角形能組成一個(gè)長(zhǎng)方形。
3.兩個(gè)完全一樣的等腰直角三角形能組成一個(gè)正方形。
4.兩個(gè)完全一樣的梯形能組成一個(gè)平行四邊形。
圓
1.把一個(gè)圓割成一個(gè)近似的長(zhǎng)方形,割拼成的長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,寬相當(dāng)于圓的半徑。則長(zhǎng)方形的面積等于圓的面積,長(zhǎng)方形的周長(zhǎng)比圓的周長(zhǎng)增加r×2。
2.一個(gè)環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r,它的面積是
3.半圓的周長(zhǎng)等于圓的周長(zhǎng)的一半加直徑。
半圓的周長(zhǎng)公式:C=d?2+d或C=pr+2r
4.半圓面積=圓的面積/2
5.在同一個(gè)圓里,半徑擴(kuò)大或縮小多少倍,直徑和周長(zhǎng)也擴(kuò)大或縮小相同的倍數(shù)。而面積擴(kuò)大或縮小以上倍數(shù)的平方倍。
圓柱、圓錐
1.把圓柱的側(cè)面展開,得到一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)等于圓柱的底面的周長(zhǎng),寬等于圓柱的高。
2.如果把圓柱的側(cè)面展開,得到一個(gè)正方形,那么圓柱的底面周長(zhǎng)和高相等。
3.把一個(gè)圓柱沿著半徑切開,拼成一個(gè)近似的長(zhǎng)方體,體積不變,表面積增加了兩個(gè)面,增加的面積是r×h×2。
4.把一個(gè)圓柱沿著底面直徑劈開,得到兩個(gè)半圓柱體,表面積和比原來(lái)增加了兩個(gè)長(zhǎng)方形的面,增加的面積和是d×h×2。
5.把一個(gè)圓柱加工成一個(gè)的圓錐,那么圓柱與圓錐等底等高,削去的圓柱的體積占圓柱體積的,削去的圓柱的體積占圓錐體積的2倍。
6.把一個(gè)圓柱截成幾段,增加的表面積是底面圓,增加的面的個(gè)數(shù)是:截的次數(shù)×2。
數(shù)學(xué)解題技巧2
初中數(shù)學(xué)的解題方法
一、深刻理解概念。
概念是數(shù)學(xué)的基石,學(xué)習(xí)概念(包括定理、性質(zhì))不僅要知其然,還要知其所以然,許多同學(xué)只注重記概念,而忽視了對(duì)其背景的理解,這樣是學(xué)不好數(shù)學(xué)的,對(duì)于每個(gè)定義、定理,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來(lái)的,又是運(yùn)用到何處的,只有這樣,才能更好地運(yùn)用它來(lái)解決問題。
溫馨提示:數(shù)學(xué)是初中階段的三大主科之一,它在初中的學(xué)習(xí)科目中,占據(jù)了主要地位。
二、審題。
認(rèn)真、仔細(xì)地審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。很多時(shí)候?qū)W生來(lái)問問題,我和他一起讀題,讀到一半時(shí),他說(shuō):“老師,我會(huì)了!
所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
初中數(shù)學(xué)的解題技巧
對(duì)概念的深度理解:考生對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí)與應(yīng)用都應(yīng)基于對(duì)數(shù)學(xué)概念的理解,而概念往往是貫穿整個(gè)知識(shí)點(diǎn)從形成到應(yīng)用始末的主線,在對(duì)概念復(fù)習(xí)中不僅應(yīng)區(qū)分它的本質(zhì)與非本質(zhì)屬性、內(nèi)涵和外延,還應(yīng)充分挖掘作為概念的判定與性質(zhì)的雙重屬性,發(fā)揮概念在章節(jié)復(fù)習(xí)中的主線作用在實(shí)際復(fù)習(xí)中。
對(duì)題目呈現(xiàn)方式的自我變式:課堂中例題的內(nèi)容必須借助于一定的'形式來(lái)表現(xiàn),而上課時(shí)間的有限并不允許老師把每一個(gè)問題都講得很透徹,考生還得在自己課余復(fù)習(xí)中積極去挖掘老師在課堂教學(xué)中留下的思考,學(xué)會(huì)積極歸納和例題變式,這樣不僅有利于考生掌握例題中所包含的知識(shí)點(diǎn),更有利于考生掌握舉一反三的數(shù)學(xué)思維習(xí)慣,做到在成功中體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣。
對(duì)思維習(xí)慣自我訓(xùn)練:復(fù)習(xí)階段考生常常會(huì)出現(xiàn)這樣的情景,上課聽聽都懂,可是要自己獨(dú)立完成作業(yè)卻往往是一籌莫展。這主要是因?yàn)榭忌鷮?duì)這樣的“聽懂”僅限于對(duì)題目解法的“知其然”,而不知“其所以然”,沒有理解老師在解題之前的探索經(jīng)歷,進(jìn)而造成了對(duì)數(shù)學(xué)思維訓(xùn)練的'缺失。因此在復(fù)習(xí)過程中有意訓(xùn)練怎么用數(shù)學(xué)的眼光來(lái)看問題、解決問題更有利于提高復(fù)習(xí)的有效性。從“已知條件”、“隱含條件”、“結(jié)論”、“解法”四個(gè)角度,對(duì)問題進(jìn)行分析不僅可以讓自己領(lǐng)悟到怎樣數(shù)學(xué)地看問題的竅門,還可以從中領(lǐng)略到數(shù)學(xué)中數(shù)形結(jié)合、整體與部分思想的妙用。
對(duì)舊題的新解:適當(dāng)?shù)貜?fù)習(xí)錯(cuò)題、舊題,可以事半功倍;〞r(shí)間解決舊題可以喚起的是考生對(duì)數(shù)學(xué)學(xué)習(xí)的靈感,考生的數(shù)學(xué)功底也將會(huì)在不知不覺中加深變厚了。
初中數(shù)學(xué)解題技巧總結(jié)
1.選擇題的答題技巧
(1)掌握選擇題應(yīng)試的基本方法:要抓住選擇題的特點(diǎn),充分地利用選擇支提供的信息,決不能把所有的選擇題都當(dāng)作解答題來(lái)做。首先,看清試題的指導(dǎo)語(yǔ),確認(rèn)題型和要求。二是審查分析題干,確定選擇的范圍與對(duì)象,要注意分析題干的內(nèi)涵與外延規(guī)定。三是辨析選項(xiàng),排誤選正。四是要正確標(biāo)記和仔細(xì)核查。
(2)特值法。在選擇支中分別取特殊值進(jìn)行驗(yàn)證或排除,對(duì)于方程或不等式求解、確定參數(shù)的取值范圍等問題格外有效。
(3)反例法。把選擇題各選擇項(xiàng)中錯(cuò)誤的答案排除,余下的便是正確答案。
(4)猜測(cè)法。因?yàn)閿?shù)學(xué)選擇題沒有選錯(cuò)倒扣分的規(guī)定,實(shí)在解不出來(lái),猜測(cè)可以為你創(chuàng)造更多的得分機(jī)會(huì)。除須計(jì)算的題目外,一般不猜A。
2.填空題答題技巧
(1)要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無(wú)誤、清晰回憶。對(duì)那些起關(guān)鍵作用的,或最容易混淆記錯(cuò)的概念、符號(hào)或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
(2)一般第4個(gè)填空題可能題意或題型較新,因而難度較大,可以酌情往后放。
3.解答題答題技巧
(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡(jiǎn)約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。
數(shù)學(xué)解題技巧3
兩類壓軸題主要考點(diǎn)
縱觀全國(guó)各地的中考數(shù)學(xué)試卷,我們不妨把壓軸題分為函數(shù)型綜合題和幾何型綜合題。
(一)函數(shù)型綜合題
▼一元二次方程與函數(shù)
相比幾何綜合題來(lái)說(shuō),代數(shù)綜合題倒不需要太多巧妙的方法,但是對(duì)考生的計(jì)算能力以及代數(shù)功底有比較高的要求。
中考數(shù)學(xué)當(dāng)中,代數(shù)問題往往是以一元二次方程與二次函數(shù)為主體,多種其他知識(shí)點(diǎn)輔助的形式出現(xiàn)的。
一元二次方程與二次函數(shù)問題當(dāng)中,純粹的一元二次方程解法通常會(huì)以簡(jiǎn)單解答題的方式考察。
但是在后面的中難檔大題當(dāng)中,通常會(huì)和根的判別式,整數(shù)根和拋物線等知識(shí)點(diǎn)結(jié)合。
▼多種函數(shù)交叉綜合問題
初中數(shù)學(xué)涉及到的函數(shù)就是一次函數(shù),反比例函數(shù)以及二次函數(shù)。
這類題目本身并不會(huì)太難,很少作為壓軸題出現(xiàn),一般都是作為一道中檔次題目來(lái)考察考生對(duì)于一次函數(shù)以及反比例函數(shù)的掌握。
所以,在中考中面對(duì)這類問題,一定要做到避免失分。
(二)幾何型綜合題
▼動(dòng)態(tài)幾何與函數(shù)問題
中考?jí)狠S題尤以涉及的.動(dòng)態(tài)幾何問題最為艱難。
幾何問題的難點(diǎn)在于想象,構(gòu)造,往往有時(shí)候一條輔助線沒有想到,整個(gè)一道題就卡殼了。
整體說(shuō)來(lái),代幾綜合題大概有兩個(gè)側(cè)重,第一個(gè)是側(cè)重幾何方面,利用幾何圖形的性質(zhì)結(jié)合代數(shù)知識(shí)來(lái)考察。
而另一個(gè)則是側(cè)重代數(shù)方面,幾何性質(zhì)只是一個(gè)引入點(diǎn),更多的考察了考生的計(jì)算功夫。
但是這兩種側(cè)重也沒有很嚴(yán)格的分野,很多題型都很類似。
其中通過圖中已給幾何圖形構(gòu)建函數(shù)是重點(diǎn)考察對(duì)象。做這類題時(shí)一定要有“減少?gòu)?fù)雜性”“增大靈活性”的主體思想。
▼幾何圖形的歸納、猜想
中考加大了對(duì)考生歸納,總結(jié),猜想這方面能力的考察,但是由于數(shù)列的系統(tǒng)知識(shí)要到高中才會(huì)正式考察,所以大多放在填空壓軸題來(lái)出。
四個(gè)壓軸題解題切入秘訣
▼切入點(diǎn)一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識(shí)點(diǎn)較多,知識(shí)轉(zhuǎn)化的難度較高。
學(xué)生不知道該怎樣入手時(shí),往往應(yīng)根據(jù)題意去尋找相似三角形。
▼切入點(diǎn)二:構(gòu)造定理所需的圖形或基本圖形
在解決問題的過程中,有時(shí)添加輔助線是必不可少的,幾乎都遵循這樣一個(gè)原則:構(gòu)造定理所需的圖形或構(gòu)造一些常見的基本圖形。
▼切入點(diǎn)三:緊扣不變量
在圖形運(yùn)動(dòng)變化時(shí),圖形的位置、大小、方向可能都有所改變。
但在此過程中,往往有某兩條線段,或某兩個(gè)角或某兩個(gè)三角形所對(duì)應(yīng)的位置或數(shù)量關(guān)系不發(fā)生改變。
▼切入點(diǎn)四:在題目中尋找多解的信息
圖形在運(yùn)動(dòng)變化,可能滿足條件的情形不止一種,也就是通常所說(shuō)的兩解或多解。
如何避免漏解是一個(gè)令考生頭痛的問題,其實(shí)多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實(shí)際上就是反復(fù)認(rèn)真的審題。
四個(gè)壓軸題解題技巧
▼定位準(zhǔn)確防止“撿芝麻丟西瓜”
在心中一定要給壓軸題或幾個(gè)“難點(diǎn)”一個(gè)時(shí)間上的限制。
如果超過你設(shè)置的上限,必須要停止,回頭認(rèn)真檢查前面的題。
盡量要保證選擇、填空萬(wàn)無(wú)一失,前面的解答題盡可能地檢查一遍。
▼學(xué)會(huì)運(yùn)用數(shù)形結(jié)合思想
縱觀近幾年全國(guó)各地的中考?jí)狠S題,絕大部分都是與平面直角坐標(biāo)系有關(guān)的。
其特點(diǎn)是通過建立點(diǎn)與數(shù)即坐標(biāo)之間的對(duì)應(yīng)關(guān)系:
一方面可用代數(shù)方法研究幾何圖形的性質(zhì),利用幾何圖形的性質(zhì)研究數(shù)量關(guān)系,尋求代數(shù)問題;
另一方面又可借助幾何直觀,得到某些代數(shù)問題的解答。
▼學(xué)會(huì)運(yùn)用函數(shù)與方程思想
用方程思想解題的關(guān)鍵是利用已知條件或公式、定理中的已知結(jié)論構(gòu)造方程(組)。
這種思想在代數(shù)、幾何及生活實(shí)際中有著廣泛的應(yīng)用。
直線與拋物線是初中數(shù)學(xué)中的兩類重要函數(shù),即一次函數(shù)與二次函數(shù)所表示的圖形。
因此,無(wú)論是求其解析式還是研究其性質(zhì),都離不開函數(shù)與方程的思想。
例如函數(shù)解析式的確定,往往需要根據(jù)已知條件列方程或方程組并解之而得。
▼解數(shù)學(xué)壓軸題做一問是一問
第一問對(duì)絕大多數(shù)同學(xué)來(lái)說(shuō),不是問題;如果第一小問不會(huì)解,切忌不可輕易放棄第二小問。
過程會(huì)多少寫多少,因?yàn)閿?shù)學(xué)解答題是按步驟給分的,字跡要工整,布局要合理;
盡量多用幾何知識(shí),少用代數(shù)計(jì)算,盡量用三角函數(shù),少在直角三角形中使用相似三角形的性質(zhì)。
在解數(shù)學(xué)綜合題時(shí)我們要做到:
數(shù)形結(jié)合記心頭,大題小作來(lái)轉(zhuǎn)化,潛在條件不能忘,化動(dòng)為靜多畫圖,分類討論要嚴(yán)密,方程函數(shù)是工具,計(jì)算推理要嚴(yán)謹(jǐn),創(chuàng)新品質(zhì)得提高。
數(shù)學(xué)解題技巧4
1.對(duì)數(shù)學(xué)考試成功的標(biāo)志要有明確的認(rèn)識(shí)
初中生身經(jīng)無(wú)數(shù)次的數(shù)學(xué)考試,有成功也有失敗,有考順之時(shí),也有別扭之日。那么什么是數(shù)學(xué)考試成功的標(biāo)志呢?有人說(shuō)是分?jǐn)?shù),有人說(shuō)是名次,還有人講只有超過某人才算……其實(shí)數(shù)學(xué)考試分?jǐn)?shù)也有絕對(duì)值和相對(duì)值,絕對(duì)值是拿你自己的數(shù)學(xué)考試分?jǐn)?shù)與及格線、滿分線等比較的結(jié)果。相對(duì)值是將你自己的數(shù)學(xué)考試分?jǐn)?shù)放在個(gè)人、班級(jí)、年級(jí)、全市等參照系中衡量其相對(duì)位置的結(jié)果。正是由于選擇的參照系不同,有的同學(xué)越比信心越足,越比干勁越大,越比越樂觀;而有的同學(xué)則越比越?jīng)]信心,越比對(duì)自己越懷疑,越比熱情越低。我的觀點(diǎn)是,數(shù)學(xué)考試成功的標(biāo)志有兩條:一是,只要將自己的水平正常發(fā)揮出來(lái)了,就是一次成功的數(shù)學(xué)考試。二是,不要橫向與其他同學(xué)比,要縱向自己與自己比。只要將第一類問題消滅到既定目標(biāo),就是一次成功的數(shù)學(xué)考試。
2.確定數(shù)學(xué)考試目標(biāo)
有資料顯示,每年中考考砸的考生約占25%。因此數(shù)學(xué)考試前確定目標(biāo)時(shí),雖然你心中有了上述兩條數(shù)學(xué)考試成功的標(biāo)志,但是對(duì)于第一條,你千萬(wàn)不要以為我可以100%的將自己的水平發(fā)揮出來(lái),這才叫正常發(fā)揮,更不要幻想超常發(fā)揮。而應(yīng)該按三層遞進(jìn)模式實(shí)施你的目標(biāo)。三層遞進(jìn)模式就是:第一要保證數(shù)學(xué)考試不考砸。第二要正常發(fā)揮。正常發(fā)揮就是將自己的水平發(fā)揮出80%,發(fā)揮出80%已經(jīng)很不簡(jiǎn)單了,發(fā)揮出80%無(wú)疑是沒考砸。第三要向更高標(biāo)準(zhǔn)邁進(jìn),就是在保證已發(fā)揮出80%以后,再向發(fā)揮100%努力,再向超常發(fā)揮進(jìn)發(fā)。雖然看似簡(jiǎn)單的三層,但我提出的是:不砸→80%→100%→超常。你若數(shù)學(xué)考試一上來(lái),就想100%發(fā)揮,超常發(fā)揮,就可能出現(xiàn)全盤皆輸?shù)腵慘局。那么保證實(shí)施三層遞進(jìn)模式的一種最佳方法就是——三輪解題法。
3.第一輪答題要敢于放棄
三輪解題法的第一輪是,當(dāng)你從前往后答題時(shí),一看這題會(huì),就答。一看這題不會(huì),就不答。一看這題會(huì),答的中間被困住卡殼了,就放。這是非常關(guān)鍵的一點(diǎn)。為什么!皶(huì)答的先答,不會(huì)答的后答’到了數(shù)學(xué)考試考場(chǎng)就做不到呢?要害在會(huì)與不會(huì)之間,難在會(huì)與不會(huì)的判定上。你想,會(huì)的題這很清楚。不會(huì)的題也很明了。但恰恰有些題是你乍一看會(huì),一做起來(lái)就卡殼,或者我不能立即得出結(jié)論,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罷不忍。每每都是在這不知不覺中喪失了寶貴的時(shí)間,每次數(shù)學(xué)考試都覺得時(shí)間不夠用,稀里糊涂地?cái)∠玛噥?lái)!皶(huì)答的先答,不會(huì)答的后答”作為一條原則是顛撲不破的真理。但若同時(shí)將它當(dāng)作數(shù)學(xué)考試方法,因?yàn)樗鼉H是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出現(xiàn)有人用它靈,有人用它不靈;有時(shí)靈,有時(shí)就不靈的現(xiàn)象。尤其是重要的數(shù)學(xué)考試,每題必爭(zhēng),每分必奪,哪道題都不想輕易放棄,哪一問都想攻下來(lái),哪一分都不想丟的時(shí)候,就往往失靈。而“三輪解題法’是一種定量的方法,量化清楚,可操作性強(qiáng)。
4.敢于休息30秒
當(dāng)按著會(huì)做的則解,不會(huì)做的則放,卡殼的也放的方法,從前做到最后一道題之后,要敢于休息30秒。而且這個(gè)休息一定是老老實(shí)實(shí)地休息。比如,可以看看窗外的自然景觀,樹在搖曳,鳥在飛翔等。也可以想想自己喜歡的流行歌曲、電視劇等,當(dāng)然不能想得太遠(yuǎn),如果你想出十集去,考試早結(jié)束了。還可以采取一些深呼吸放松法、自我深度松馳法、積極的自我暗示法等。當(dāng)然也可以什么都不想,就是閉目養(yǎng)神。在休息過程中要注意一點(diǎn),采用什么休息方法悉聽尊便,但千萬(wàn)不要想自己沒做上來(lái)的某道題。
為什么要用敢于休息30秒的“敢于”兩字呢?是因?yàn)榻^大多數(shù)同學(xué)每每都覺得時(shí)間不夠,哪還敢擠出時(shí)間休息呀!其實(shí)恰恰相反,因?yàn)閿?shù)學(xué)考試是高度的耗氧活動(dòng),對(duì)腦力、體力消耗很大,經(jīng)過一段時(shí)間便會(huì)出現(xiàn)疲勞的現(xiàn)象,此時(shí)若用意志力來(lái)堅(jiān)持,效率自然不高。經(jīng)過休息就會(huì)使腦力得到恢復(fù),使體力得到補(bǔ)充,經(jīng)休息后再投入到解題過程中會(huì)高效發(fā)揮,所以敢于休息的同學(xué)反而時(shí)間就夠了,這就是辯證法。這也正是俗話所說(shuō)“磨刀不誤砍柴工”的道理。敢于休息30秒也是心理狀態(tài)提升的體現(xiàn)。數(shù)學(xué)考試時(shí)有的同學(xué)一聽到其他同學(xué)快速翻頁(yè)的聲響就著急,眼睛的余光一看別的同學(xué)答得較快就發(fā)慌……現(xiàn)在我能做到不為所動(dòng),不被所引,我還敢于主動(dòng)休息。急答出現(xiàn)差錯(cuò),穩(wěn)答一次成功,孰優(yōu)孰劣是不言自明的道理。心理狀態(tài)的提升需要一個(gè)磨煉過程。敢于休息30秒,就是心理狀態(tài)走向成熟的開始,因此一定要敢于休息。休息后進(jìn)人第二輪。
5.第二輪查缺補(bǔ)漏
第一輪將會(huì)做的題都做了,休息后還有沒有會(huì)做的題了呢?回答是肯定的。依據(jù)有兩條:一條是實(shí)踐的依據(jù);一條是理論的依據(jù)。
任何一名考生幾乎都曾有過這樣的考試經(jīng)歷,在數(shù)學(xué)考試過程中某道題不會(huì),不得不放棄了,但當(dāng)答到后邊某處時(shí),忽悠一下想起前邊那道題該怎么做了;蛘呤谴鸬胶筮吥车李},或者看見一道題的某句話、某個(gè)符號(hào)等,立刻喚醒了記憶,產(chǎn)生了頓悟,激發(fā)了靈感等,前邊那道題就做出來(lái)了。這就是實(shí)踐的依據(jù)。
數(shù)學(xué)考試時(shí),從答題開始到達(dá)到數(shù)學(xué)考試最佳思維狀態(tài)即圖中①點(diǎn)處需要一個(gè)上升過程,但是達(dá)到最佳思維狀態(tài)后,有些人還能下來(lái),如碰到一道4分左右的小題,自以為能做出來(lái),但摳了半天就是做不出來(lái),心情一團(tuán)糟,這時(shí)絕不是最佳狀態(tài)了,這時(shí)思維狀態(tài)就下降了。有人一落千丈,也有人下降后還能升上去,再度達(dá)到最佳思維狀態(tài),而我們希望的理想狀態(tài)是,盡快達(dá)到最佳思維狀態(tài),當(dāng)達(dá)到最佳思維狀態(tài)后,一直持續(xù)到考試結(jié)束。
6.第三輪換思路解題
休息以后,要從前到后檢查一遍自己做過的題。檢查通過后,從理論上講,你已經(jīng)將自己的水平100%的發(fā)揮出來(lái)了,但實(shí)際上是80%。因?yàn)槟銠z查雖然通過了,可還存在你沒檢查出來(lái)或檢查錯(cuò)了的可能性,所以說(shuō)是80%。雖然是80%,但已經(jīng)很不簡(jiǎn)單了。在一次數(shù)學(xué)考試中,能將自己的水平發(fā)揮出80%就是一次成功的數(shù)學(xué)考試。你看體育競(jìng)賽,你觀奧運(yùn)會(huì),有多少運(yùn)動(dòng)員,有多少運(yùn)動(dòng)隊(duì)積多年訓(xùn)練之精華,蓄埋藏4年之心愿,只為了場(chǎng)上一搏。這一搏往往是發(fā)揮出平時(shí)訓(xùn)練水平的80%就可以取得勝利,就可以拿牌。對(duì)發(fā)揮出80%,你一定認(rèn)識(shí)到,我的水平已經(jīng)發(fā)揮出來(lái)了,我就是這個(gè)水平。我對(duì)得起自己,對(duì)得起父母,對(duì)得起……但如果這時(shí)數(shù)學(xué)考試還沒結(jié)束,還有時(shí)間,也沒有必要檢查第二遍,這時(shí)決不能滿足80%,要向100%進(jìn)發(fā),向超常發(fā)揮努力,做那些沒做上來(lái)的題。但是做是做不出來(lái)了,已經(jīng)做過兩輪都沒做出來(lái),說(shuō)明是難點(diǎn),是“硬骨頭”。對(duì)于難點(diǎn)和“硬骨頭”采用常規(guī)做法已經(jīng)不行了。這時(shí)要攻,要向難點(diǎn)和“硬骨頭”發(fā)起總攻。那么如何攻呢?可用換思路解題法來(lái)攻。
換思路解題法是基于這樣的思考,當(dāng)你解題時(shí),僅僅將題做對(duì)是遠(yuǎn)遠(yuǎn)不夠的,只有知道此題有幾種解法,哪種是優(yōu)化的解法才算優(yōu)秀。許多人都曾有過這樣的經(jīng)歷,解題時(shí)想起了這題出自哪章哪節(jié),老師講這點(diǎn)時(shí)是如何強(qiáng)調(diào)的,此題是考哪個(gè)或哪幾個(gè)知識(shí)點(diǎn),老師出這題想考什么……此時(shí)答這題感覺非常有把握,解題非常順。這就是靈感。其實(shí)靈感也沒有什么神秘,誰(shuí)都曾經(jīng)在數(shù)學(xué)考試過程中迸發(fā)過靈感的火花。當(dāng)然如果你甚至能看透某題的陷阱和迷惑在哪里,你就是頂尖高手了?傊,此時(shí)已是不攻白不攻,不得白不得,攻一步進(jìn)一寸,得1分是1分的時(shí)候了。但要換思路,看看哪題能攻下來(lái)攻哪題,哪點(diǎn)能拿下來(lái)拿哪點(diǎn)。想想它是出自哪章哪節(jié)?老師想考哪個(gè)知識(shí)點(diǎn)?各點(diǎn)之間是什么關(guān)系……這時(shí)要放飛你的記憶能力、領(lǐng)悟能力、多向聯(lián)想能力、逆向思維能力、發(fā)散思維能力、創(chuàng)新能力等,多方位、多角度、多層次地思考。這時(shí)新的思路就有可能被打開,興奮點(diǎn)就可能被激活,靈感的火花就可能如年三十的禮花一樣在空中綻放。同學(xué)們,大膽嘗試吧!你曾經(jīng)有過的靈感定會(huì)一次次再現(xiàn)。
7.變?nèi)喗忸}法為自定理
三輪解題法是一種全新的數(shù)學(xué)考試答題方法,是經(jīng)過實(shí)踐驗(yàn)證的科學(xué)、合理、有效的數(shù)學(xué)考試答題方法。認(rèn)識(shí)掌握并運(yùn)用了三輪解題法的同學(xué)都取得了不同程度的進(jìn)步。但應(yīng)用三輪解題法卻要因人而異,因科而異。若想靈活運(yùn)用三輪解題法,第一要認(rèn)識(shí)它的科學(xué)性、合理性、有效性;第二要實(shí)踐,沒有多次的實(shí)踐是不能掌握這樣一種全新的方法的;第三要總結(jié),看看自己究竟是三輪好,還是二輪妙,或是四輪高。中間的兩次休息,多長(zhǎng)時(shí)間為宜?傊,絕不是一輪到底,不管會(huì)不會(huì)的題都要跟它拼上三、五回合的從小學(xué)沿用至今的數(shù)學(xué)考試答題方法了。這是一種全新的分輪次解題方法。對(duì)不同的科目,應(yīng)用三輪解題法也應(yīng)有所差異。比如數(shù)、理、化等是這樣的三輪。而語(yǔ)文則應(yīng)該是閱讀題之前是一輪,做完就要檢查結(jié)束。然后閱讀題是一輪,最后一輪全身心地寫作文。理想狀態(tài)是作文寫完,剩余時(shí)間少于5分鐘。如果剩多了,說(shuō)明你前邊的時(shí)間分配不合理,要改進(jìn)。英語(yǔ)、歷史。政治、地理等的三輪也要因科而異。
歡迎參考
數(shù)學(xué)解題技巧5
文章摘要:如果有一個(gè)自然數(shù)a能被自然數(shù)b整除,則稱a為b的倍數(shù),b為a的約數(shù),對(duì)于兩個(gè)整數(shù)來(lái)說(shuō),指該兩數(shù)共有倍數(shù)中最小的一個(gè)。
巧用最小公倍數(shù)
例1 一籃子雞蛋,2個(gè)2個(gè)地?cái)?shù)多1個(gè)。3個(gè)3個(gè)地?cái)?shù)多1個(gè),4個(gè)4個(gè)地?cái)?shù)多1個(gè),5個(gè)5個(gè)地?cái)?shù)多1個(gè),6個(gè)6個(gè)地?cái)?shù)多1個(gè),7個(gè)7個(gè)地?cái)?shù)正好不多不少。試問這籃子雞蛋是多少個(gè)?
解:雞蛋數(shù)量是一個(gè)比2、3、4、5、6的公倍數(shù)多1,而且恰好是7的倍數(shù)的數(shù)。
2、3、4、5、6的最小公倍數(shù)是60,但60+1=61不是7的倍數(shù)。60的2倍、3倍、4倍加上1以后都不滿足條件。
只有60的5倍加1能被7整除,所以雞蛋數(shù)是:
60×5+1=301(個(gè))
滿足上述條件的數(shù)還有721,1141……但籃子里不可能裝這么多雞蛋。
例2 孟老師負(fù)責(zé)運(yùn)動(dòng)會(huì)團(tuán)體操的隊(duì)形排列。他在操場(chǎng)上把參加團(tuán)體操的同學(xué)排成10人一行,發(fā)現(xiàn)少1人;排成9人一行,還是少1人;排成8人一行,還是少1人;排成7人一行、6人一行……2人一行,每次總是少1人。孟老師生氣了:真見鬼,怎么排都少1人!到底有多少人參加團(tuán)體操?全校的學(xué)生都來(lái)了也不過3000人。
解:孟老師只要把自己算進(jìn)去,那么10人一行也好,9人一行也好……,2人一行也好,都能恰好分完,就是說(shuō),正好是10、9、8、7、6、5、4、3、2的公倍數(shù)。這幾個(gè)數(shù)的最小公倍數(shù)2520,減去孟老師,所以是2519人。
例3 三人繞圓形花園散步,甲45分鐘繞一周;乙60分鐘繞一周;丙72分鐘繞一周。今三人同地同向同時(shí)起行。問經(jīng)幾小時(shí)后在原地相會(huì)?相會(huì)時(shí)各繞幾周?
解:相會(huì)時(shí)必定是三人繞花園一周時(shí)間的公倍數(shù),而最少時(shí)間為其最小公倍數(shù)。
[45,60,72]=360
原處相會(huì)需經(jīng)360÷60=6(小時(shí))
甲繞 360÷45=8(周)
乙繞 360÷60=6(周)
丙繞 360÷72=5(周)
例4 某畢業(yè)班開茶話會(huì),兩人一盤桔子,三人一盤梨,四人一盤糖,共用盤65個(gè)。參加會(huì)議的學(xué)生多少人?
解:人數(shù)是2、3、4的公倍數(shù),其[2,3,4]=12,即至少12人,用盤
12÷2+12÷3+12÷4=13(個(gè))
因?yàn)閷?shí)際用盤是13的65÷13=5(倍),所以參加會(huì)的學(xué)生是
12×5=60(人)
例5 農(nóng)機(jī)廠生產(chǎn)一批零件,單獨(dú)做甲車間10天完成,乙車間8天完成,已知乙車間每天比甲車間多生產(chǎn)200個(gè)零件,這批零件一共多少個(gè)?
此題解法很多,但都沒有用求最小公倍數(shù)的'方法來(lái)得簡(jiǎn)便。
求出10和8的最小公倍數(shù),就是求出了至少要經(jīng)過多少天,乙車間比甲車間多生產(chǎn)整整“一批零件”。
[10,8]=40 200×40=8000(個(gè))
例6 甲、乙兩車同時(shí)從A至B,甲車每小時(shí)行48千米,乙車每小時(shí)行36千米。甲車途中停留4小時(shí),結(jié)果比乙車遲到1小時(shí),求A、B兩地的距離。
此題的解法也很多,但都比不上求最小公倍數(shù)的解法巧妙。
由題意可知,從A至B,甲車比乙車少用4-1=3(小時(shí)),可用求最小公倍數(shù)法求出至少行多少千米,甲車比乙車少用1小時(shí),那么,3個(gè)這樣的多少千米就是A、B兩地間的距離。
[48,36]=144
144×(4-1)=432(千米)
例7 兩個(gè)小學(xué)生滾鐵環(huán),當(dāng)甲環(huán)旋轉(zhuǎn)50周時(shí),乙環(huán)在同樣的距離中轉(zhuǎn)了40周,如果乙環(huán)的周長(zhǎng)比甲環(huán)長(zhǎng)0.44米,求這段距離?
解:[50,40]=200
這段距離為0.44×200=88(米)
因?yàn)?0與40的最小公倍數(shù)是200,而200÷50=4,200÷40=5,說(shuō)明都轉(zhuǎn)200周時(shí)甲環(huán)行了4段這樣的(88米)距離,而乙環(huán)又則行了5段同樣的距離,比甲多出一段這樣的距離。
例8 一群鴨。三個(gè)三個(gè)地?cái)?shù),剩1只;五個(gè)五個(gè)地?cái)?shù),剩3只;七個(gè)七個(gè)地?cái)?shù),剩5只。連頭帶腳一起數(shù),不超過500.這群鴨有多少只?
解:因?yàn)轼嗩^、鴨腳總數(shù)不超過500,而一只鴨的頭和腳是3,所以鴨的總數(shù)不會(huì)超過200只。
鴨數(shù)用3除余1,用5除余3,用7除余5,它們的除數(shù)和余數(shù)都差2,加上2就一定能被這三個(gè)數(shù)整除。
[3,5,7]=105
鴨數(shù)為 105-2=103(只)
數(shù)學(xué)解題技巧6
1數(shù)學(xué)各類題型
1.選擇題是所占比例較大(40%)的客觀性試題,考察的內(nèi)容具體,知識(shí)點(diǎn)多,“雙基”與能力并重。對(duì)選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯(cuò)誤陳述,采用特殊什么方法求解等。
2.填空題屬于客觀性試題。一般是中檔題,但是由于沒有中間解題過程,也就沒有過程分,稍微出現(xiàn)點(diǎn)錯(cuò)誤就和一點(diǎn)不會(huì)做結(jié)果相同,“后果嚴(yán)重”。審題時(shí)注意題目考查的知識(shí)點(diǎn)、方法和此類問題的易錯(cuò)點(diǎn)等。
3.解答題在試卷中所占分?jǐn)?shù)較多(74分),不僅需要解出結(jié)果還要列出解題過程。解答這種題目時(shí),審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯(lián)想相關(guān)題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。
2選擇題的答題技巧
掌握選擇題應(yīng)試的基本方法:要抓住選擇題的特點(diǎn),充分地利用選擇支提供的信息,決不能把所有的選擇題都當(dāng)作解答題來(lái)做。
首先,看清試題的指導(dǎo)語(yǔ),確認(rèn)題型和要求。二是審查分析題干,確定選擇的范圍與對(duì)象,要注意分析題干的內(nèi)涵與外延規(guī)定。三是辨析選項(xiàng),排誤選正。四是要正確標(biāo)記和仔細(xì)核查。
3填空題答題技巧
要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無(wú)誤、清晰回憶。
對(duì)那些起關(guān)鍵作用的',或最容易混淆記錯(cuò)的概念、符號(hào)或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
4解答題答題技巧
(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡(jiǎn)約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。
數(shù)學(xué)解題技巧7
1、數(shù)形結(jié)合思想
就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。
2、聯(lián)系與轉(zhuǎn)化的思想
事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。
在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3、分類討論的思想
在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的.解題策略。
4、待定系數(shù)法
當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問題得到解決。
5、配方法
就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。
6、換元法
在解題過程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問題的一種方法。換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問題歸結(jié)為比原來(lái)更為基本的問題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。
7、分析法
在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”
8、綜合法
在研究或證明命題時(shí),如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>
9、演繹法
由一般到特殊的推理方法。
數(shù)學(xué)解題技巧8
初一數(shù)學(xué)解題訓(xùn)練方法與技巧
試題的綜合性比較強(qiáng),也有一定的靈活性,沒有過于專業(yè)和抽象難懂的內(nèi)容;控制一定的及格率,要求以中等偏上題為主,沒有通常意義下的所謂“難題”。所以考生在數(shù)學(xué)復(fù)習(xí)中一定要重視基礎(chǔ)知識(shí)。對(duì)概念和性質(zhì)一定要理解其內(nèi)涵和外延,對(duì)各個(gè)知識(shí)點(diǎn)一定要弄清楚其區(qū)別和聯(lián)系。同時(shí)要做一定數(shù)量的題目,要逐步提高運(yùn)算的速度和準(zhǔn)確度。逐步培養(yǎng)解答綜合試題的能力。
在考研復(fù)習(xí)期間,每個(gè)人都會(huì)做大量的數(shù)學(xué)題,但題目的數(shù)量并不是決定勝負(fù)的關(guān)鍵,關(guān)鍵在于做題的質(zhì)量。所謂“質(zhì)量”,是指你從一道題中學(xué)到了多少知識(shí)和解題方法,發(fā)現(xiàn)了多少自身存在的問題,體會(huì)到了多少命題的思路和考點(diǎn)。考研數(shù)學(xué)復(fù)習(xí)必須做題,但是不能把做題和基礎(chǔ)知識(shí)的復(fù)習(xí)對(duì)立起來(lái)。有人認(rèn)為數(shù)學(xué)基本題太簡(jiǎn)單,不愿意做,都去做更多更難的題目。但是,如果對(duì)理論知識(shí)領(lǐng)會(huì)不深,基本概念都沒搞清楚,恐怕基本題也做不好,又怎么談得上做更多更難的題目呢?缺乏基本功,盲目追求題目的深度、難度和做題數(shù)量,結(jié)果只能是深的不會(huì)做,淺的也難免錯(cuò)誤百出。其實(shí)解題的過程也是加深對(duì)數(shù)學(xué)定理、公式和基本概念的理解和認(rèn)識(shí)的過程。
用一句話概括就是:“先階段,后綜合;勤總結(jié),多溫故”。這個(gè)非常好理解,重點(diǎn)是在實(shí)施的時(shí)候要注意什么方面,如在進(jìn)行階段時(shí)的復(fù)習(xí)當(dāng)中,我們常做的方法是將基礎(chǔ)知識(shí)通看一遍,然后拿來(lái)自己選用的參考書進(jìn)行練習(xí)。一定要多問幾個(gè)為什么!在理解概念時(shí),多問問自己為什么,它的潛在意義在哪,應(yīng)用的題型是什么樣的,適用的范圍有哪幾個(gè),應(yīng)該套用的公式是哪些。在做題方面,需要我們注意的就是要經(jīng)常性地總結(jié),把自己做得題常常找出來(lái)好好地總結(jié)歸納,同一題型經(jīng)常用什么樣的解題通式,這樣在拿到題的時(shí)候心中進(jìn)不會(huì)發(fā)慌。
做題有很多好處的:一是通過做題來(lái)準(zhǔn)確理解、把握基本概念、公式、結(jié)論的內(nèi)涵和外延,并逐漸掌握它們的使用方法。試卷上不需要考生默寫某個(gè)概念或公式,而是用這些概念或公式解決問題,這種靈活運(yùn)用公式的能力只有也只能通過做題來(lái)獲得,所以考生必須做一定數(shù)目的題目。二是題目做的多了,做題才有思路。數(shù)學(xué)的題目雖然千變?nèi)f化,但基本結(jié)構(gòu)卻大體相同,題型也不會(huì)變化太大,題目的解答也有一定規(guī)律可尋,題目做的多了,自然而然就會(huì)迅速形成解題思路。三是題目做的多了,可以提高解題速率和正確率。選擇題和填空題在數(shù)學(xué)考卷中所占的比重很大,這些題目的解答往往會(huì)“一失足成千古恨”,稍不留神,一步做錯(cuò)就全軍覆沒。另外,題目也不需要做得太多,整天泡在題海中沒有必要,只要掌握了需要掌握的知識(shí)點(diǎn)并能熟練應(yīng)用即可。考生一方面要做真題,另一方面要做難度適宜,覆蓋面全,集中體現(xiàn)考綱要求的題目,數(shù)量自己把握。
第一,按照大綱對(duì)數(shù)學(xué)基本概念、基本方法、基本定理準(zhǔn)確把握。數(shù)學(xué)是一門演繹的科學(xué),靠?jī)e幸押題是行不通的。只有對(duì)基本概念有深入理解,對(duì)基本定理和公式牢牢記住,才能找到解題的突破口和切入點(diǎn)。分析近幾年考生的數(shù)學(xué)答卷可以發(fā)現(xiàn),考生失分的一個(gè)重要原因就是對(duì)基本概念、定理理解不準(zhǔn)確,數(shù)學(xué)中最基本的`方法掌握不好,給解題帶來(lái)思維上的困難。
第二,要加強(qiáng)解綜合性試題和應(yīng)用題能力的訓(xùn)練,力求在解題思路上有所突破。在解綜合題時(shí),迅速地找到解題的切入點(diǎn)是關(guān)鍵一步,為此需要熟悉規(guī)范的解題思路,考生應(yīng)能夠看出面前的題目與他曾經(jīng)見到過的題目的內(nèi)在聯(lián)系。為此必須在復(fù)習(xí)備考時(shí)對(duì)所學(xué)知識(shí)進(jìn)行重組,搞清有關(guān)知識(shí)的縱向與橫向聯(lián)系,轉(zhuǎn)化為自己真正掌握的東西。解應(yīng)用題的一般步驟都是認(rèn)真理解題意,建立相關(guān)數(shù)學(xué)模型,如微分方程、函數(shù)關(guān)系、條件極值等,將其化為某數(shù)學(xué)問題求解。建立數(shù)學(xué)模型時(shí),一般要用到幾何知識(shí)、物理力學(xué)知識(shí)和經(jīng)濟(jì)學(xué)術(shù)語(yǔ)等。
第三,重視歷年試題的強(qiáng)化訓(xùn)練。統(tǒng)計(jì)表明,每年的研究生入學(xué)考試高等數(shù)學(xué)內(nèi)容較之前幾年都有較大的重復(fù)率,近年試題與往年考題雷同的占50%左右,這些考題或者改變某一數(shù)字,或改變一種說(shuō)法,但解題的思路和所用到的知識(shí)點(diǎn)幾乎一樣。通過對(duì)考研的試題類型、特點(diǎn)、思路進(jìn)行系統(tǒng)的歸納總結(jié),并做一定數(shù)量習(xí)題,有意識(shí)地重點(diǎn)解決解題思路問題。對(duì)于那些具有很強(qiáng)的典型性、靈活性、啟發(fā)性和綜合性的題,要特別注重解題思路和技巧的培養(yǎng)。盡管試題千變?nèi)f化,其知識(shí)結(jié)構(gòu)基本相同,題型相對(duì)固定。提練題型的目的,是為了提高解題的針對(duì)性,形成思維定勢(shì),進(jìn)而提高考生解題的速度和準(zhǔn)確性。
學(xué)習(xí)數(shù)學(xué)常見的四種問題
數(shù)學(xué)學(xué)不好的問題一:對(duì)某個(gè)單元沒有信心
解決方法一:要克服在某個(gè)單元上的弱點(diǎn),把那個(gè)單元整理出來(lái)也就輕而易舉地解決了。
按照前面介紹的表格式整理法,整理那個(gè)單元的時(shí)候,把過難的題目先擱在一邊,以必修類型為中心把題目整理得一目了然。同時(shí)添加小標(biāo)題。
接下來(lái),不斷反復(fù),直到把那些題目完全記在腦子中為止,并去理解其解題過程。
數(shù)學(xué)學(xué)不好的問題二:某種類型的題目經(jīng)常做錯(cuò)
解決方法二:要克服在某種類型題目上的弱點(diǎn),就要對(duì)考試中做錯(cuò)題目的根源一追到底,找出來(lái)后解決掉。
考試的時(shí)候,很多題目看上去好像是陌生的,但實(shí)際上大部分都是做過一遍的題目,或者與之類似的題目。而即便這樣還是做錯(cuò)了,就是因?yàn)闆]有以去除弱點(diǎn)的方式來(lái)學(xué)習(xí)的緣故。
即使題目的內(nèi)容有所不同,但如果上一次你在利用概率的加法定理解答的題目中做錯(cuò)了,這次又在類似的題目中做錯(cuò)了的話,就是因?yàn)闆]有以克服弱點(diǎn)的方式來(lái)學(xué)習(xí)。
因此,考完試之后,要想一下做錯(cuò)的題目當(dāng)初不會(huì)做或者沒有想起來(lái)的理由到底是什么,如果自己有哪部分在理解或解答上沒有信心,就要找到內(nèi)容的出處,不僅與那道題直接相關(guān)的內(nèi)容,就連它周圍的東西都要毫無(wú)遺漏地學(xué)習(xí)一遍。
數(shù)學(xué)學(xué)不好的問題三:對(duì)某個(gè)主題沒有信心
解決方法三:克服在某一主題上的弱點(diǎn)的方法。
在某一主題上的弱點(diǎn),對(duì)于初中生來(lái)說(shuō)就是碰到以新面目出現(xiàn)的題目經(jīng)常不會(huì)解答,對(duì)于高中生來(lái)說(shuō)就是經(jīng)常在值、最小值題目上沒有自信。為了解決這一問題,就要像前面說(shuō)過的克服某一單元弱點(diǎn)的方法一樣去做整理工作。只不過在這兒更應(yīng)該側(cè)重的是整理這一過程,而不是對(duì)題目進(jìn)行復(fù)習(xí)、檢查的解題過程。
數(shù)學(xué)學(xué)不好的問題四:考試或?qū)W習(xí)中有壞習(xí)慣
解決方法四:如果某種習(xí)慣成了自己的弱點(diǎn)的話,為了使其得到糾正,就要努力有意識(shí)地或者使用特定的方法來(lái)改掉這一習(xí)慣。
中考數(shù)學(xué)復(fù)習(xí)答題技巧
在考試的過程中,有的同學(xué)“藝高人膽大”,拿了試卷就直接從后往前做;有的同學(xué)則“爭(zhēng)分奪秒”,答題鈴聲還沒響就匆匆做題,這些都是不可取的。
中考數(shù)學(xué)試卷是有一定梯度的,答題時(shí)一定要從前往后答,切忌從后往前答或從中間向前后答。這是因?yàn)榍懊骖}簡(jiǎn)單,容易做,能夠給考生“旗開得勝”的快感,使考生緊張心情馬上得到平靜。同時(shí),在答題的鈴聲沒響前也不要急著答題。如果被監(jiān)考老師發(fā)現(xiàn)而被責(zé)備會(huì)更加緊張影響答題。這時(shí)候可以看一看最后的一兩道壓軸題。在看的時(shí)候就可以預(yù)估一下整套試卷的難易度,同時(shí)制定答題策略。假如覺得這一份試卷不難,那就可以在前面的題目多花些時(shí)間,將答題書寫整齊有條理。如果覺得壓軸題十分難,就要爭(zhēng)取把題目能做多少做多少,不能后面幾大題都空著。這時(shí)候書寫潦草一點(diǎn),過程簡(jiǎn)單點(diǎn)都是可以的。
在答題的時(shí)候,抓住得分點(diǎn)是重點(diǎn)也是難點(diǎn),需要區(qū)分對(duì)待。例如客觀題,此類題只要結(jié)果不要過程,要注意順手解答,即一邊看題一邊寫答案。解答題要求考生書寫要規(guī)范、嚴(yán)謹(jǐn),答案要完整。答卷時(shí)要緊扣得分點(diǎn),不要丟答題的步驟,在弄不清得分點(diǎn)的情況下,寧多寫勿少寫,字跡要清晰,切忌留白空。
綜合題涉及的知識(shí)點(diǎn)多,且是有些題閱讀量大、綜合性、技巧性強(qiáng)的“壓軸題”。這時(shí)候千萬(wàn)不要放棄解答。第1問、第2問思維含量不是很高,因此不要輕易放棄,只要你平時(shí)成績(jī)不是很差,你一般都能拿到分。但對(duì)于最后一問,建議水平一般的考生在明知“不可為”的情況下切莫“強(qiáng)為之”。因?yàn)檫@道題除了具有知識(shí)點(diǎn)多、閱讀量大、綜合性、技巧性強(qiáng)的特點(diǎn)以外,還具有較強(qiáng)的選拔性,難度比較大。與其說(shuō)吊死在“壓軸題”這棵樹上,倒不如回到前面去檢查那些基礎(chǔ)題、中檔題有沒有做錯(cuò)。一道基礎(chǔ)題的分?jǐn)?shù)與大題一個(gè)問的分?jǐn)?shù)差不多,而一道中檔題比壓軸題才少兩分。如果把前面的分?jǐn)?shù)拿完了,你的考分也能上90分左右,豈不美哉?
數(shù)學(xué)解題技巧9
a、三角函數(shù)與向量解題技巧
平移問題:永遠(yuǎn)記住左右平移只是對(duì)x做變化,上下平移就是對(duì)y考點(diǎn):對(duì)于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠(yuǎn)切記。
b、概率解題技巧
它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)問題看,同時(shí)可能會(huì)涉及到正余弦考點(diǎn):對(duì)文科生來(lái)說(shuō),這個(gè)類型的題主要是考我們對(duì)題目意思的定理,難度一般不大。理解,在解題過程能學(xué)
只要你能熟練掌握公式,這類題都不是問題。會(huì)樹狀圖和列表,題目也是相當(dāng)?shù)暮?jiǎn)單,只要你能審題準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對(duì)理
最值(值域)、單調(diào)性、周期性、對(duì)稱性、未知數(shù)的取值范圍、平移科生來(lái)說(shuō),主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識(shí)點(diǎn),同時(shí)會(huì)問題等要求我們準(zhǔn)確掌握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來(lái):其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。
種是模長(zhǎng)公式(該種方法是在題目沒有告訴坐標(biāo)的情況下應(yīng)用),
題型:在這里我就不多說(shuō)了,都是求概率,沒有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(lái)(該種方法是在題目告訴了坐標(biāo)),不過要注意我們?cè)?jīng)
即在這里遇到過的線性規(guī)劃問題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡(jiǎn):化簡(jiǎn)的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似
導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來(lái)就是題目要求的概率
這類型題目對(duì)理科生來(lái)說(shuō)一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。
c、幾何解題技巧
考點(diǎn):這類題主要是考察咱們對(duì)空間物體的感覺,希望大家在平時(shí)學(xué)習(xí)過程中,多培養(yǎng)一些立體的、空間的感覺,將自己設(shè)身處地于那么一個(gè)立體的空間中去,這類題對(duì)文科生來(lái)說(shuō),難度都比較簡(jiǎn)單,但是對(duì)理科生來(lái)說(shuō),可能會(huì)比較復(fù)雜一些,特別是在二面角的求法上,對(duì)理科生來(lái)說(shuō)是一個(gè)巨大的挑戰(zhàn),它需要理科生能對(duì)兩個(gè)面夾角培養(yǎng)出感情來(lái),這樣輔助線的做法以及邊長(zhǎng)的求法就變得如此之簡(jiǎn)單了。
題型:
這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)
解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說(shuō)直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說(shuō)實(shí)話,證明垂直的問題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來(lái)證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來(lái)說(shuō)是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來(lái),這樣即為二面角(說(shuō)白了就是應(yīng)用三垂線定理來(lái)找)
二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說(shuō)一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說(shuō)一聲。
d、圓錐曲線解題技巧
考點(diǎn):這類題型,其實(shí)難度真的不是很大,我個(gè)人理解主要是考大家的計(jì)算能力怎么樣,還有就是對(duì)題目的理解能力,同時(shí)也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現(xiàn)在還不知道,趁早去記一下,不然考試的時(shí)候都不知道的哈,我真的無(wú)語(yǔ)了。
題型:這種類型的題一般都是以下幾種出法:第一個(gè)問一般情況就是求圓錐曲線方程或者就是求某一個(gè)點(diǎn)的軌跡方程,第二個(gè)問一般都是涉及到直線的'問題,要么就是求范圍,要么就是求定值,要么就是求直線方程
解題思路:
求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據(jù)題目條件來(lái)求解(如題目告訴你曲線的離心率和過某一個(gè)點(diǎn)坐標(biāo)),另一種就是隱含的告訴我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑,去寫出曲線的方程,這種問法就比較難點(diǎn),其實(shí)也主要是看我們的基本功底怎么樣,對(duì)基礎(chǔ)扎實(shí)的同學(xué)來(lái)說(shuō),這種問法也不是問題的。
求軌跡方程:這種問題需要我們首先對(duì)要求點(diǎn)的坐標(biāo)設(shè)出來(lái)A(x,y),然后用A點(diǎn)表示出題目中某一已知點(diǎn)B的坐標(biāo),然后用表示出來(lái)的點(diǎn)坐標(biāo)代入點(diǎn)B的軌跡方程中,這樣就可以求出A點(diǎn)的軌跡方程了,一般求出來(lái)都是圓錐曲線方程,如果不是,你就可能錯(cuò)了。直線與圓錐曲線問題:三個(gè)步驟你還知道嗎(一設(shè)、二代,三韋達(dá))。
先做完這個(gè)三個(gè)步驟,然后看題目給了我們什么條件,然后對(duì)條件進(jìn)行化簡(jiǎn)(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來(lái),希望大家注意點(diǎn)),在化簡(jiǎn)的過程中我們需要代韋達(dá)進(jìn)去運(yùn)算,如果我們?cè)谶\(yùn)算的過程中遇到了,一定要記得應(yīng)用直線方程將表示出來(lái),然后根據(jù)韋達(dá)化簡(jiǎn)到最后結(jié)果。最后看題目問我們什么,如果問定值,你還知道怎么做么,不知道的就現(xiàn)在來(lái)問我,如果問我們范圍,你還知道有一個(gè)東西么,如果問直線方程,你求出來(lái)的直線斜率有兩個(gè),還知道怎么做么,如果要想舍去其中一個(gè),你還記得一個(gè)東西么。同時(shí)如果你是一個(gè)追求完美的人,我希望你在做題的時(shí)候考慮到直線斜率存在與否的問題,如果你覺得你心胸開闊,那點(diǎn)分?jǐn)?shù)我不要了,我考慮斜率存不存在的問題,那么我就說(shuō)你牛!!
個(gè)人理解的話,圓錐曲線都不是很難的,就是計(jì)算量比較復(fù)雜了一點(diǎn),但是只要我們用心、專心點(diǎn),都是可以做出來(lái)的,不信你慢慢的去嘗試看看!
e、函數(shù)導(dǎo)數(shù)解題技巧
考點(diǎn):這種類型的題主要是考大家對(duì)導(dǎo)數(shù)公式的應(yīng)用,導(dǎo)數(shù)的含義,明確導(dǎo)數(shù)可以用來(lái)干什么,如果你都不知道導(dǎo)數(shù)可以用來(lái)干什么,你還談什么做題呢。在導(dǎo)數(shù)這塊,我是希望大家都能盡量的多拿一些分?jǐn)?shù),因?yàn)槠潆y度不是很大,主要你用心去學(xué)習(xí)了,記住方法了,這個(gè)分?jǐn)?shù)對(duì)我們來(lái)說(shuō)都是可以小菜一碟的。
題型:
最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn))
解題思路:
最值、單調(diào)性(極值):首先對(duì)原函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)為零求出極值點(diǎn),然后畫出表格判斷出在各個(gè)區(qū)間的單調(diào)性,最后得出結(jié)論。未知數(shù)的取值范圍(不等式):其實(shí)它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應(yīng)的最值,咱們就勝利了,這個(gè)種看起來(lái)很復(fù)雜,其實(shí)很簡(jiǎn)單,你說(shuō)呢。
未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn)):這種要是沒有掌握方法的人,覺得:哇,怎么就那么難呀,其實(shí)不然,很簡(jiǎn)單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡(jiǎn)單的畫一個(gè)圖形我們就可以分析出未知數(shù)的取值范圍了,說(shuō)起來(lái)也挺簡(jiǎn)單的,如果有什么不了解的,可以馬上問我,不要留下遺憾。
f、數(shù)列解題技巧
考點(diǎn):
對(duì)于數(shù)列,我對(duì)大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分?jǐn)?shù),如果要是有人能全部做對(duì),我也替你高興,這類題型,主要是考大家對(duì)等比等差數(shù)列的理解,包括通項(xiàng)與求和,難度還是有的,其實(shí)你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:
一般分為證明和計(jì)算(包括通項(xiàng)公式、求和、比較大小),
解題思路:
證明:就是要求我們證明一個(gè)數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個(gè)等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項(xiàng)或者等比中項(xiàng)來(lái)證明數(shù)列。
計(jì)算(通項(xiàng)公式):一般這個(gè)題都還是比較簡(jiǎn)單的,這類型的題,我只要求大家能掌握其中題目表達(dá)式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項(xiàng)公式對(duì)大家來(lái)說(shuō)應(yīng)該是達(dá)到駕輕就熟的地步了,希望大家能把握這么容易的分?jǐn)?shù)。
求和:這種題對(duì)文科生來(lái)說(shuō),應(yīng)該知道我要說(shuō)什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,
三個(gè)步驟:乘公比,錯(cuò)位相減,化系數(shù)為一。光是記住步驟沒有用的,同時(shí)我也希望同學(xué)們不要眼高手低,不要以為很簡(jiǎn)單的,其實(shí)真正能算正確的不一定那么容易的,所以我還是希望大家多加練習(xí),親自操作一下。對(duì)理科生來(lái)說(shuō),也要注意這樣的數(shù)列求和,同時(shí)還要掌握一種數(shù)列求和,就是這個(gè)數(shù)列求和是將其中的一個(gè)等差或等比數(shù)列按照一定的順序抽調(diào)了一部分?jǐn)?shù)列,然后構(gòu)成一個(gè)新的數(shù)列求和,還有就是要注意了如果題目里面涉及到這個(gè)的時(shí)候,一定要記住數(shù)列相互奇偶性的討論了,非常的重要哈。
比較大小:這種題目我對(duì)大家的要求很低,因?yàn)橐话愣际欠趴s法的問題,我也不是要求大家非要怎么樣怎么樣的,對(duì)這類問題需要我們的基本功底很深,要學(xué)會(huì)適當(dāng)?shù)姆糯蠛头判〉膯栴},對(duì)這個(gè)問題的把握,需要大家對(duì)一些經(jīng)常遇到的放縮公式印在腦海里面。
補(bǔ)充:在不是導(dǎo)數(shù)的其他大題中,如果遇到求最值的問題,一般有兩種方法求解,一種是二次函數(shù)求最值,一種就是基本不等式求最值。
數(shù)學(xué)解題技巧10
一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
二、《立體幾何》
點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇。距離都從點(diǎn)出發(fā),角度皆為線線成。
垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來(lái)對(duì)應(yīng),開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
拓展閱讀:高二文科生數(shù)學(xué)學(xué)法指導(dǎo)
總的來(lái)說(shuō),可以分為8大部分:函數(shù)、數(shù)列、立體幾何、解析幾何、排列組合、不等式、平面向量、二項(xiàng)式定理以及統(tǒng)計(jì)。其中,尤其以函數(shù)和幾何較為難學(xué),同時(shí)也是重點(diǎn)內(nèi)容,要弄清楚它們各自的特點(diǎn)以及相互之間的聯(lián)系,這些都是最基本的內(nèi)容。而要做到這一點(diǎn),首先就要對(duì)課本上的一些基本的概念、定理、公式了如指掌,用的時(shí)候才能從容不迫,信手拈來(lái)。但是,這些往往也是最容易被忽視的——大家都忙著做一道又一道的習(xí)題,買一本又一本厚厚的習(xí)題書,哪有時(shí)間去看課本?
有些同學(xué)可能會(huì)想,數(shù)學(xué)又不是、,書上的習(xí)題又大都極簡(jiǎn)單,何必看課本呢?殊不知,課本對(duì)于數(shù)學(xué)來(lái)說(shuō),也是很重要的。數(shù)學(xué)有20%的基礎(chǔ)題目,只要花上一點(diǎn)點(diǎn)時(shí)間把課本好好看看,要拿下這些題易如反掌;反之,要是對(duì)一些基本的概念、定理都含混不清,不但基礎(chǔ)題會(huì)失分,難題也不可能做得很好,畢竟這些都是基礎(chǔ)啊。數(shù)學(xué)的邏輯性、分析性極強(qiáng),可以說(shuō)是一種純理性的科學(xué),要求一定要清晰明了,是不太可能出現(xiàn)做出題目卻不知是如何做對(duì)的情況的,因而基礎(chǔ)知識(shí)十分重要。
其次,相當(dāng)多的習(xí)題自然是必不可少的。在理解了基本的`概念以后,必須要做大量的練習(xí),這樣才能鞏固所學(xué)到的知識(shí),加深對(duì)概念的了解。所謂熟能生巧,數(shù)學(xué)最能體現(xiàn)這句話的哲理性。數(shù)學(xué)的思維、解題的技巧,只有在做題中摸索,印象才會(huì)深刻,運(yùn)用起來(lái)才會(huì)得心應(yīng)手。當(dāng)然,這并不是提倡題海戰(zhàn)術(shù),適量就可,習(xí)題做得太多,很容易產(chǎn)生厭煩情緒。最重要的還是選題,一定要選好題、精題。在這一方面,的建議是很值得考慮的,最好買推薦的參考。同時(shí)做題還要根據(jù)自己的實(shí)際情況。一般而言,要先做基礎(chǔ)題,把基礎(chǔ)打牢固,然后再逐步加深難度,做一些提高性的題目。每一個(gè)知識(shí)點(diǎn)都要做一定量的上難度的題來(lái)鞏固,這樣才能將其牢牢掌握做完每個(gè)題之后,要回頭看一遍(尤其是難題),想想做這一題有什么收獲,這樣,就不會(huì)做了很多題卻沒有什么效果。
運(yùn)算也是很重要的一個(gè)環(huán)節(jié),與的重要性不相上下。培養(yǎng)一種發(fā)散性思維,尋求解題的多種,當(dāng)然非常重要。但是,有一些同學(xué),他們具有很強(qiáng)的思維,能夠從多種角度思考問題,可是計(jì)算卻不強(qiáng),平時(shí)也不訓(xùn)練,時(shí)往往是找對(duì)了卻算錯(cuò)了答案,非?上А5拇_ 高中政治,繁瑣的運(yùn)算是令人望而生畏的,但是,在運(yùn)算過程中你將發(fā)現(xiàn)許多新的問題,而運(yùn)算也就在訓(xùn)練中漸漸提高了。因而,數(shù)學(xué)方法要與計(jì)算并重。一方面,要重視做題方法的訓(xùn)練,從多角度、多方面去思考問題;同時(shí),也要注意鍛煉計(jì)算能力,注重計(jì)算的精確性,而不能偏向一方。
總結(jié)。把專題的卷子和綜合的卷子分門別類,每一份都進(jìn)行認(rèn)真細(xì)致的總結(jié),挑出其中含金量最高的題,同時(shí),“旁征博引”,把曾經(jīng)遇到過的相關(guān)的題目總結(jié)到一起,一道也不放過。這樣總結(jié)下來(lái),一定能對(duì)各類題型都能夠了如指掌,對(duì)出題者的出題角度也有了準(zhǔn)確的把握。通過對(duì)上百份的細(xì)致歸納總結(jié),很多同學(xué)的數(shù)學(xué)都有了大幅度的提高。需要強(qiáng)調(diào)的是在總結(jié)試卷的過程中一定要深入下去,千萬(wàn)不能走形式,只有深入方能有所收獲。在深入的過程中不要在乎時(shí)間,有時(shí)候,在總結(jié)一道大題時(shí),會(huì)把相關(guān)的題型總結(jié)到一起,這項(xiàng)其實(shí)是相當(dāng)繁雜的,絕不等同于弄懂一道題。而做這項(xiàng)的收益也將是巨大的。所以,即使用一個(gè)晚上來(lái)做這件事也非常值得。千萬(wàn)不要心情急躁,看見別人一道接一道的做題而不安。
平時(shí)的學(xué)習(xí)要注意以下幾點(diǎn):
1、按部就班。數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
2、強(qiáng)調(diào)理解。概念、定理、公式要在理解的基礎(chǔ)上。每新學(xué)一個(gè)定理,嘗試先不看答案,做一次例題,看是否能正確運(yùn)用新定理;若不行,則對(duì)照答案,加深對(duì)定理的理解。
3、基本訓(xùn)練。學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時(shí)多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。
4、重視平時(shí)考試出現(xiàn)的錯(cuò)誤。訂一個(gè)錯(cuò)題本,專門搜集自己的錯(cuò)題,這些往往就是自己的薄弱之處。復(fù)習(xí)時(shí),這個(gè)錯(cuò)題本也就成了寶貴的復(fù)習(xí)資料。
的學(xué)習(xí)有一個(gè)循序漸進(jìn)的過程,妄想一步登天是不現(xiàn)實(shí)的。熟記書本內(nèi)容后將書后習(xí)題認(rèn)真寫好,有些同學(xué)可能認(rèn)為書后習(xí)題太簡(jiǎn)單不值得做,這種想法是極不可取的,書后習(xí)題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴(yán)整,公式定理能夠運(yùn)用的恰如其分,以減少考試中無(wú)謂的失分。
數(shù)學(xué)解題技巧11
17題三角函數(shù)
17題考的知識(shí)點(diǎn)比較簡(jiǎn)單,只要在平時(shí)多加注意和總結(jié)就不成問題,但是重要的公式譬如二倍角公式等一定要熟記,這些是做題的基礎(chǔ);
18題立體幾何
18題的第一小題通常是證明題,有時(shí)利用現(xiàn)成的條件馬上就可以證明,但是也不排除需要做輔助線有一點(diǎn)難度的可能,而且形勢(shì)越來(lái)越偏向后一種,所以在平時(shí)要多多注意需要做輔助線的證明題,第二小題通常是求線面角和線線角的大小,也有可能是求相關(guān)的體積,不過這樣也是變相的讓你求線面角或線線角的大小,至于求面面角大小,我們老師說(shuō)不大可能,因?yàn)榍竺婷娼堑碾y度稍大所需要的時(shí)間也會(huì)比較多,這樣對(duì)后面的發(fā)揮會(huì)有比較大的影響,(雖然高考的目的是選拔人才,但是全省的平均分也不能太低。)
提醒一點(diǎn):如果做第二小題時(shí)沒有很快有思路,那就果斷選擇向量法,向量法的難點(diǎn)是空間直角坐標(biāo)系的建立,一定要找到三條相互垂直的線分別作為x軸y軸z軸,相互垂直一定要是能證明出來(lái)的,如果單憑感覺建立空間直角坐標(biāo)系萬(wàn)一錯(cuò)了后面的就完全錯(cuò)了。
19題導(dǎo)數(shù)
19題的難點(diǎn)是求導(dǎo),如果你對(duì)復(fù)雜函數(shù)的求導(dǎo)掌握的很熟練,那第一小題就不用擔(dān)心啦,第二小題會(huì)比較有難度,但是基礎(chǔ)還是求導(dǎo),無(wú)論有沒有思路都要先求導(dǎo),說(shuō)不定在求導(dǎo)的過程中就找到思路了;
20題圓錐曲線
20題是圓錐曲線,第一小題還是比較基礎(chǔ)的但完全正確的前提是要掌握橢圓、雙曲線、拋物線的定義,因?yàn)楹苡锌赡軙?huì)出現(xiàn)讓你判斷某某是橢圓、雙曲線、還是拋物線的題目。第二小題比較難,但是簡(jiǎn)單在有一定的套路,(做題做多了就知道的)套路就是1.設(shè)立坐標(biāo),一般是求什么設(shè)什么.2.將坐標(biāo)帶入所在曲線的方程中.3.利用韋達(dá)定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的內(nèi)容盡力轉(zhuǎn)換為與x1、x2、y1、y2相關(guān)的式子,在轉(zhuǎn)換的過程中要結(jié)合題目的條件.一定要篩選和轉(zhuǎn)換題目中所給出的條件,因?yàn)橛械姆绞诫m然可以得出結(jié)果但是過程很復(fù)雜,浪費(fèi)的時(shí)間會(huì)比較多,別忘了后面還有一個(gè)大boss呢。
21題最難
21題那實(shí)在是太難了,至少在我看來(lái),最后一小題幾乎是寫不出來(lái)的,就算完全寫出來(lái)也需要很長(zhǎng)的時(shí)間,那我們能做的就是在剩下為數(shù)不多的時(shí)間內(nèi)盡力向老師要分?jǐn)?shù),就是能想到什么就寫下來(lái)不要打草稿直接寫。最后提一下:鈴聲響起來(lái)的那一刻,其實(shí)你的'分?jǐn)?shù)已經(jīng)定了,無(wú)論考的好還是壞,都是既定的事實(shí)了,那就隨它去吧,爭(zhēng)取明天的英語(yǔ)才是最主要的。
注意:我有一個(gè)很好的做數(shù)學(xué)錯(cuò)題的方法在這里分享給大家,就是將數(shù)學(xué)錯(cuò)題分類。怎么分類呢?首先,將主要內(nèi)容分類,就和課本上一樣分類,就像第一章節(jié)是關(guān)于集合第二章節(jié)是關(guān)于函數(shù)。其次,將該章節(jié)學(xué)到的內(nèi)容分類,譬如集合中有并集、交集等就將錯(cuò)題分為關(guān)于交集的錯(cuò)題關(guān)于并集的錯(cuò)題,如果是都有的話就寫到混合的錯(cuò)題中。
最后,將解并集題目的方法中再進(jìn)行分類,譬如分為1.利用畫數(shù)軸方法解.2.利用—方法解......這樣到時(shí)把所有的解題方法都掌握了,那么數(shù)學(xué)題還怕什么。依據(jù)以上幾點(diǎn),我覺得錯(cuò)題本最好是活頁(yè)的,這樣分類起來(lái)會(huì)比較方便而且可以隨時(shí)增減題目雖然方法不是特別好,但是自我感覺還是有很多可取的地方的。無(wú)論方法多么完美,只有付出行動(dòng)才會(huì)有進(jìn)步。
高中數(shù)學(xué)大題解題思路高考數(shù)學(xué)大題結(jié)構(gòu)安排:第三步就是將化簡(jiǎn)為一個(gè)整體的式子(如y=a的形式)根據(jù)題目要
A、三角函數(shù)與向量的結(jié)合求來(lái)解答:
B、概率論最值(值域):要首先求出的范圍,然后求出y的范圍
C、立體幾何單調(diào)性:首先明確sin函數(shù)的單調(diào)性,然后將代入sin函數(shù)的單調(diào)范
D、圓錐曲線圍解出x的范圍(這里一定要注意2的正負(fù)性)
E、導(dǎo)數(shù)周期性:利用公式求解
F、數(shù)列對(duì)稱性:要熟練掌握sin、cos、tan函數(shù)關(guān)于軸對(duì)稱和點(diǎn)對(duì)稱的公式。
數(shù)學(xué)解題技巧12
高考數(shù)學(xué)填空題的4大解題技巧
1直接法
這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等知識(shí),通過變形、推理、運(yùn)算等過程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺地、有意識(shí)地采取靈活、簡(jiǎn)捷的解法。
2特殊化法
當(dāng)填空題的結(jié)論或題設(shè)條件中提供的信息暗示答案是一個(gè)定值時(shí),而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點(diǎn),特殊方程,特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論。這樣可大大地簡(jiǎn)化推理、論證的過程。
3數(shù)形結(jié)合法
"數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微。"數(shù)學(xué)中大量數(shù)的問題后面都隱含著形的信息,圖形的特征上也體現(xiàn)著數(shù)的關(guān)系。我們要將抽象、復(fù)雜的`數(shù)量關(guān)系,通過形的形象、直觀揭示出來(lái),以達(dá)到"形幫數(shù)"的目的;同時(shí)我們又要運(yùn)用數(shù)的規(guī)律、數(shù)值的計(jì)算,來(lái)尋找處理形的方法,來(lái)達(dá)到"數(shù)促形"的目的。對(duì)于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),則往往可以簡(jiǎn)捷地解決問題,得出正確的結(jié)果。
4等價(jià)轉(zhuǎn)化法
通過"化復(fù)雜為簡(jiǎn)單、化陌生為熟悉",將問題等價(jià)地轉(zhuǎn)化成便于解決的問題,從而得出正確的結(jié)果。
高中數(shù)學(xué)常考題型答題技巧與方法
1、解決絕對(duì)值問題
主要包括化簡(jiǎn)、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對(duì)值的問題轉(zhuǎn)化為不含絕對(duì)值的問題。
具體轉(zhuǎn)化方法有:
①分類討論法:根據(jù)絕對(duì)值符號(hào)中的數(shù)或式子的正、零、負(fù)分情況去掉絕對(duì)值。
②零點(diǎn)分段討論法:適用于含一個(gè)字母的多個(gè)絕對(duì)值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2、因式分解
根據(jù)項(xiàng)數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式
選擇用公式
十字相乘法
分組分解法
拆項(xiàng)添項(xiàng)法
3、配方法
利用完全平方公式把一個(gè)式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4、換元法
解某些復(fù)雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:
設(shè)元→換元→解元→還元
5、待定系數(shù)法
待定系數(shù)法是在已知對(duì)象形式的條件下求對(duì)象的一種方法。適用于求點(diǎn)的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設(shè)②列③解④寫
數(shù)學(xué)填空題解題技巧
適當(dāng)做題,巧做為王。有的同學(xué)埋頭題?嗫鄴暝,輔導(dǎo)書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區(qū)。數(shù)學(xué)需要實(shí)踐,需要大量做題,但要“埋下頭去做題,抬起頭來(lái)想題”,在做題中關(guān)注思路、方法、技巧,要“苦做”更要“巧做”。中考試中時(shí)間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯(cuò)。
前后聯(lián)系,縱橫貫通。在做題中要注重發(fā)現(xiàn)題與題之間的內(nèi)在聯(lián)系,絕不能“傻做”。在做一道與以前相似的題目時(shí),要會(huì)通過比較,發(fā)現(xiàn)規(guī)律,穿透實(shí)質(zhì),以達(dá)到“觸類旁通”的境界。特別是幾何題中的輔助線添法很有規(guī)律性,在做題中要特別記牢。
記錄錯(cuò)題,避免再犯。俗話說(shuō),“一朝被蛇咬,十年怕井繩”,可是同學(xué)們常會(huì)一次又一次地掉入相似甚至相同的"陷阱"里。因此,我建議大家在平時(shí)的做題中就要及時(shí)記錄錯(cuò)題,還要想一想為什么會(huì)錯(cuò)、以后要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考當(dāng)中是“分分必爭(zhēng)”,一分也失不得。
數(shù)學(xué)解題技巧13
一、調(diào)整好狀態(tài),控制好自我。
(1)保持清醒。數(shù)學(xué)的考試時(shí)間在下午,建議同學(xué)們中午最好休息半個(gè)小時(shí)或一個(gè)小時(shí),其間盡量放松自己,從心理上暗示自己:只有靜心休息才能確?荚嚂r(shí)清醒。
(2)提前進(jìn)入角色,考前做好準(zhǔn)備.
按清單帶齊一切用具,提前半小時(shí)到達(dá)考區(qū),一方面可以消除緊張、穩(wěn)定情緒、從容進(jìn)場(chǎng),另一方面也留有時(shí)間提前進(jìn)入角色讓大腦開始簡(jiǎn)單的數(shù)學(xué)活動(dòng),進(jìn)入單一的數(shù)學(xué)情境。如:1.清點(diǎn)一下用具是否帶齊(筆、橡皮、作圖工具、身份證、準(zhǔn)考證等)。2.把一些基本數(shù)據(jù)、常用公式、重要定理在腦子里過過電影。3.最后看一眼難記易忘的知識(shí)點(diǎn)。4.互問互答一些不太復(fù)雜的問題。5.注意上廁所。
(3)按時(shí)到位。今年的答題卡不再單獨(dú)發(fā)放,要求答在答題卷上,但發(fā)卷時(shí)間應(yīng)在開考前5分鐘內(nèi)。建議同學(xué)們提前15~20分鐘到達(dá)考場(chǎng)。
二、瀏覽試卷,確定考試策略
一般提前5分鐘發(fā)卷,涂卡、填密封線內(nèi)部分和座號(hào)后瀏覽試卷:試卷發(fā)下后,先利用23分鐘時(shí)間迅速把試卷瀏覽一遍,檢查試卷有無(wú)遺漏或差錯(cuò),了解考題的難易程度、分值等概況以及試題的數(shù)目、類型、結(jié)構(gòu)、占分比例、哪些是難題,同時(shí)根據(jù)考試時(shí)間分配做題時(shí)間,做到心中有數(shù),把握全局,做題時(shí)心緒平定,得心應(yīng)手。
三、巧妙制定答題順序
在瀏覽完試卷后,對(duì)答題順序基本上做到心中有數(shù),然后盡快做出答題順序,排序要注意以下幾點(diǎn):
1.根據(jù)自己對(duì)考試內(nèi)容所掌握的程度和試題分值來(lái)確定答題順序。
2.根據(jù)自己認(rèn)為的難易程度,按先易后難先小后大先熟后生的原則排序。
四、提高解選擇題的'速度、填空題的準(zhǔn)確度。
數(shù)學(xué)選擇題是知識(shí)靈活運(yùn)用,解題要求是只要結(jié)果、不要過程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法盡顯威力。12個(gè)選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求快、準(zhǔn)、巧,忌諱小題大做。填空題也是只要結(jié)果、不要過程,因此要力求完整、嚴(yán)密。
五、審題要慢,做題要快,下手要準(zhǔn)。
題目本身就是破解這道題的信息源,所以審題一定要逐字逐句看清楚,只有細(xì)致地審題才能從題目本身獲得盡可能多的信息。找到解題方法后,書寫要簡(jiǎn)明扼要,快速規(guī)范,不拖泥帶水,牢記高考評(píng)分標(biāo)準(zhǔn)是按步給分,關(guān)鍵步驟不能丟,但允許合理省略非關(guān)鍵步驟。答題時(shí),盡量使用數(shù)學(xué)語(yǔ)言、符號(hào),這比文字?jǐn)⑹鲆?jié)省而嚴(yán)謹(jǐn)。
六、保質(zhì)保量拿下中下等題目。
中下題目通常占全卷的80%以上,是試題的主要部分,是考生得分的主要來(lái)源。誰(shuí)能保質(zhì)保量地拿下這些題目,就已算是打了個(gè)勝仗,有了勝利在握的心理,對(duì)攻克高難題會(huì)更放得開。
七、要牢記分段得分的原則,規(guī)范答題。
會(huì)做的題目要特別注意表達(dá)的準(zhǔn)確、考慮的周密、書寫的規(guī)范、語(yǔ)言的科學(xué),防止被分段扣點(diǎn)分。
難題要學(xué)會(huì)①缺步解答:聰明的解題策略是,將它們分解為一系列的步驟,或者是一個(gè)個(gè)小問題,能解決多少就解決多少,能演算幾步就寫幾步。②跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時(shí),我們可以假定某些結(jié)論是正確的往后推,看能否得到結(jié)論,或從結(jié)論出發(fā),看使結(jié)論成立需要什么條件。如果方向正確,就回過頭來(lái),集中力量攻克這一卡殼處。如果時(shí)間不允許,那么可以把前面的寫下來(lái),再寫出證實(shí)某步之后,繼續(xù)有一直做到底,這就是跳步解答。也許,后來(lái)中間步驟又想出來(lái),這時(shí)不要亂七八糟插上去,可補(bǔ)在后面。若題目有兩問,第一問想不出來(lái),可把第一問作已知,先做第二問,這也是跳步解答。今年仍是網(wǎng)上閱卷,望大家規(guī)范答題,減少隱形失分。
靈活調(diào)整時(shí)間。時(shí)間分配的目的是為了考試成功,要靈活掌握,隨時(shí)巧變,不要墨守常規(guī)。
數(shù)學(xué)解題技巧14
高考數(shù)學(xué)解析幾何解題路徑
我們先來(lái)分析一下解析幾何高考的命題趨勢(shì):
(1)題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右,占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:《考試說(shuō)明》中解析幾何部分原有33個(gè)知識(shí)點(diǎn),現(xiàn)縮為19個(gè)知識(shí)點(diǎn),一般考查的知識(shí)點(diǎn)超過50%,其中對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒有遺漏,通過對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí),考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
、偾笄方程(類型確定、類型未定);
、谥本與圓錐曲線的交點(diǎn)問題(含切線問題);
、叟c曲線有關(guān)的最(極)值問題;
、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
、萏角笄方程中幾何量及參數(shù)間的數(shù)量特征;
(3)能力立意,滲透數(shù)學(xué)思想:如20xx年第(22)題,以梯形為背景,將雙曲線的概念、性質(zhì)與坐標(biāo)法、定比分點(diǎn)的坐標(biāo)公式、離心率等知識(shí)融為一體,有很強(qiáng)的綜合性。一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
在近年高考中,對(duì)直線與圓內(nèi)容的考查主要分兩部分:
(1)以選擇題題型考查本章的基本概念和性質(zhì),此類題一般難度不大,但每年必考,考查內(nèi)容主要有以下幾類:
、倥c本章概念(傾斜角、斜率、夾角、距離、平行與垂直、線性規(guī)劃等)有關(guān)的問題;
、趯(duì)稱問題(包括關(guān)于點(diǎn)對(duì)稱,關(guān)于直線對(duì)稱)要熟記解法;
、叟c圓的位置有關(guān)的問題,其常規(guī)方法是研究圓心到直線的距離.
以及其他“標(biāo)準(zhǔn)件”類型的基礎(chǔ)題。
(2)以解答題考查直線與圓錐曲線的位置關(guān)系,此類題綜合性比較強(qiáng),難度也較大。
預(yù)計(jì)在今后一、二年內(nèi),高考對(duì)本章的考查會(huì)保持相對(duì)穩(wěn)定,即在題型、題量、難度、重點(diǎn)考查內(nèi)容等方面不會(huì)有太大的變化。
相比較而言,圓錐曲線內(nèi)容是平面解析幾何的核心內(nèi)容,因而是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系等,從近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質(zhì);
(2)求曲線方程和求軌跡;
(3)關(guān)于直線與圓及圓錐曲線的位置關(guān)系的問題.
選擇題主要以橢圓、雙曲線為考查對(duì)象,填空題以拋物線為考查對(duì)象,解答題以考查直線與圓錐曲線的位置關(guān)系為主,對(duì)于求曲線方程和求軌跡的題,高考一般不給出圖形,以考查學(xué)生的想象能力、分析問題的'能力,從而體現(xiàn)解析幾何的基本思想和方法,圓一般不單獨(dú)考查,總是與直線、圓錐曲線相結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡(jiǎn)方程一般不出解答題,大多是以選擇題形式出現(xiàn).解析幾何的解答題一般為難題,近兩年都考查了解析幾何的基本方法——坐標(biāo)法以及二次曲線性質(zhì)的運(yùn)用的命題趨向要引起我們的重視.
請(qǐng)同學(xué)們注意圓錐曲線的定義在解題中的應(yīng)用,注意解析幾何所研究的問題背景平面幾何的一些性質(zhì).從近兩年的試題看,解析幾何題有前移的趨勢(shì),這就要求考生在基本概念、基本方法、基本技能上多下功夫.參數(shù)方程是研究曲線的輔助工具.高考試題中,涉及較多的是參數(shù)方程與普通方程互化及等價(jià)變換的數(shù)學(xué)思想方法。
高二數(shù)學(xué)必修3知識(shí)點(diǎn)整理:幾何概型
幾何概型
【考點(diǎn)分析】
在段考中,多以選擇題和填空題的形式考查幾何概型的計(jì)算公式等知識(shí)點(diǎn),也會(huì)以解答題的形式考查。在高考中有時(shí)會(huì)以選擇題和填空題的形式考查幾何概型的計(jì)算公式,有時(shí)也不考,一般屬于中檔題。
【知識(shí)點(diǎn)誤區(qū)】
求幾何概型時(shí),注意首先尋找到一些重要的臨界位置,再解答。一般與線性規(guī)劃知識(shí)有聯(lián)系。
【同步練習(xí)題】
1.已知函數(shù)f(x)=log2x,若在[1,8]上任取一個(gè)實(shí)數(shù)x0,則不等式1≤f(x0)≤2成立的概率是.
解析:區(qū)間[1,8]的長(zhǎng)度為7,滿足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,對(duì)應(yīng)區(qū)間[2,4]長(zhǎng)度為2,由幾何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.
點(diǎn)評(píng):本題考查了幾何概型問題,其與線段上的區(qū)間長(zhǎng)度及函數(shù)被不等式的解法問題相交匯,使此類問題具有一定的靈活性,關(guān)鍵是明確集合測(cè)度,本題利用區(qū)間長(zhǎng)度的比求幾何概型的概率.
2.在區(qū)間[-3,5]上隨機(jī)取一個(gè)數(shù)a,則使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)的概率是.
解析:由已知區(qū)間[-3,5]長(zhǎng)度為8,使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)即判別式Δ=4a2-16<0,解得-2點(diǎn)評(píng):本題屬于幾何概型,只要求出區(qū)間長(zhǎng)度以及滿足條件的區(qū)間長(zhǎng)度,由幾何概型公式解答.
高三數(shù)學(xué)立體幾何知識(shí)點(diǎn)復(fù)習(xí)
學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。
點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。
判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進(jìn)向量新工具,計(jì)算證明開新篇?臻g建系求坐標(biāo),向量運(yùn)算更簡(jiǎn)便。
知識(shí)創(chuàng)新無(wú)止境,學(xué)問思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。
算面積來(lái)求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
數(shù)學(xué)解題技巧15
你還在為高中數(shù)學(xué)學(xué)習(xí)而苦惱嗎?別擔(dān)心,看了高二數(shù)學(xué)解題技巧:分類法講解以后你會(huì)有很大的收獲:
高二數(shù)學(xué)解題技巧:分類法講解
分類法是數(shù)學(xué)中的一種基本方法,對(duì)于提高解題能力,發(fā)展思維的縝密性,具有十分重要的意義。
不少數(shù)學(xué)問題,在解題過程中,常常需要借助邏輯中的分類規(guī)則,把題設(shè)條件所確定的集合,分成若干個(gè)便于討論的非空真子集,然后在各個(gè)非空真子集內(nèi)進(jìn)行求解,直到獲得完滿的結(jié)果。這種把邏輯分類思想移植到數(shù)學(xué)中來(lái),用以指導(dǎo)解題的方法,通常稱為分類或分域法。
用分類法解題,大體包含以下幾個(gè)步驟:
第一步:根據(jù)題設(shè)條件,明確分類的對(duì)象,確定需要分類的集合A;
第二步:尋求恰當(dāng)?shù)?分類根據(jù),按照分類的規(guī)則,把集合A分為若干個(gè)便于求解的非空真子集A1,A2,
第三步:在子集A1,A2,An內(nèi)逐類討論;
第四步:綜合子集內(nèi)的解答,歸納結(jié)論。
以上四個(gè)步驟是相互聯(lián)系的,尋求分類的根據(jù),是其中的一項(xiàng)關(guān)鍵性的工作。從總體上說(shuō),分類的主要依據(jù)有:分類敘述的定義、定理、公式、法則,具有分類討論位置關(guān)系的幾何圖形,題目中含有某些特殊的或隱含的分類討論條件等。在實(shí)際解題時(shí),僅憑這些還不夠,還需要有較強(qiáng)的分類意識(shí),需要思維的靈活性和縝密性,特別要善于發(fā)掘題中隱含的分類條件。
通過閱讀高二數(shù)學(xué)解題技巧:分類法講解這篇文章,小編相信大家對(duì)高中數(shù)學(xué)的學(xué)習(xí)又有了更進(jìn)一步的了解,希望大家學(xué)習(xí)輕松愉快!
【數(shù)學(xué)解題技巧】相關(guān)文章:
高考數(shù)學(xué)解題技巧09-25
中考數(shù)學(xué)的解題技巧09-23
數(shù)學(xué)解題技巧15篇12-03
數(shù)學(xué)選擇題解題技巧04-28
數(shù)學(xué)選擇題解題技巧11-06
高一數(shù)學(xué)解題技巧12-25