高中數(shù)學知識點總結
在平凡的學習生活中,是不是經(jīng)常追著老師要知識點?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。哪些才是我們真正需要的知識點呢?下面是小編整理的高中數(shù)學知識點總結,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學知識點總結 1
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。
3、a—邊長,S=6a2,V=a3。
4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱錐S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。
11、r—底半徑h—高V=πr^2h/3。
12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。
16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。
17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。
高中數(shù)學知識點總結 2
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當?shù)淖鴺讼,設出動點M的坐標;
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
4、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的`方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>
、谠O點——設軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點軌跡方程。
高中數(shù)學知識點總結 3
。ㄒ唬⿲(shù)第一定義
設函數(shù)y = f(x)在點x0的某個領域內(nèi)有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第一定義
。ǘ⿲(shù)第二定義
設函數(shù)y = f(x)在點x0的某個領域內(nèi)有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第二定義
。ㄈ⿲Ш瘮(shù)與導數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間I內(nèi)可導。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導函數(shù),記作y,f(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。
(四)單調(diào)性及其應用
1.利用導數(shù)研究多項式函數(shù)單調(diào)性的.一般步驟
。1)求f¢(x)
。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
高中數(shù)學知識點總結 4
一、平面的基本性質與推論
1、平面的基本性質:
公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);
公理2過不在一條直線上的三點,有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角
二、空間中的平行關系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點
判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的`一條直線平行,則該直線平行于此平面(由線線平行得出)
性質:一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點
判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
性質:兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的垂直關系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質:垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
高中數(shù)學知識點總結 5
考點一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯(lián)結詞、“充要關系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。
考點二:函數(shù)與導數(shù)
函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的'單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結合,解決角度、垂直、共線等問題是“新熱點”題型。
考點四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。
考點五:立體幾何與空間向量
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復數(shù)推理與證明
高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡交匯命題是考查的主流.復數(shù)考查的重點是復數(shù)的有關概念、復數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問。
高中數(shù)學知識點總結 6
(一)導數(shù)第一定義
設函數(shù) y = f(x) 在點 x0 的某個領域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f(x0) ,即導數(shù)第一定義
(二)導數(shù)第二定義
設函數(shù) y = f(x) 在點 x0 的某個領域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f(x0) ,即 導數(shù)第二定義
(三)導函數(shù)與導數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導函數(shù)簡稱導數(shù)。
(四)單調(diào)性及其應用
1.利用導數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的'對應區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
學習了導數(shù)基礎知識點,接下來可以學習高二數(shù)學中涉及到的導數(shù)應用的部分。
高中數(shù)學知識點總結 7
有界性
設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調(diào)性
設函數(shù)f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。
幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變。
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。
幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數(shù)的.例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個雙射映射。
連續(xù)性
在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù).如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
高中數(shù)學知識點總結 8
等比數(shù)列公式性質知識點
1.等比數(shù)列的有關概念
(1)定義:
如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數(shù)).
(2)等比中項:
如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.
2.等比數(shù)列的有關公式
(1)通項公式:an=a1qn-1.
3.等比數(shù)列{an}的常用性質
(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.
特別地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.
4.等比數(shù)列的`特征
(1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的,公比q也是非零常數(shù).
(2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.
5.等比數(shù)列的前n項和Sn
(1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.
(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
等比數(shù)列知識點
1.等比中項
如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。
有關系:
注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。
2.等比數(shù)列通項公式
an=a1_q’(n-1)(其中首項是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項和
當q≠1時,等比數(shù)列的前n項和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
當q=1時,等比數(shù)列的前n項和的公式為
Sn=na1
3.等比數(shù)列前n項和與通項的關系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數(shù)列性質
(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。
(5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
等比數(shù)列知識點總結
等比數(shù)列:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。
1.等比數(shù)列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);
2.等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an
、佼攓≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②當q=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
3.等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
4.性質:
①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;
②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.
例題:設ak,al,am,an是等比數(shù)列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an
證明:設等比數(shù)列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)
所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an
說明:這個例題是等比數(shù)列的一個重要性質,它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an
對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an
高中數(shù)學知識點總結 9
集合的分類:
(1)按元素屬性分類,如點集,數(shù)集。
(2)按元素的個數(shù)多少,分為有/無限集
關于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。
集合可以根據(jù)它含有的元素的個數(shù)分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數(shù)全體構成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或NX。
整數(shù)全體構成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的`形式。)
實數(shù)全體構成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應的數(shù)。)
1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數(shù)的全體構成的集合,可表示為{0,1,2,3,…,100}。
無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。
例如:正偶數(shù)構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學知識點總結 10
簡單隨機抽樣
(1)總體和樣本
①在統(tǒng)計學中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
、郯芽傮w中個體的總數(shù)叫做總體容量。
④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,…,__研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的`方法:
①抽簽法;
、陔S機數(shù)表法;
、塾嬎銠C模擬法;
、凼褂媒y(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
(4)抽簽法:
、俳o調(diào)查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查
(5)隨機數(shù)表法
高中數(shù)學知識點總結 11
空間兩條直線只有三種位置關系:平行、相交、異面。
按是否共面可分為兩類:
(1)共面:平行、相交
。2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法。
若從有無公共點的角度看可分為兩類:
。1)有且僅有一個公共點——相交直線;
。2)沒有公共點——平行或異面。
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行。
、僦本在平面內(nèi)——有無數(shù)個公共點
、谥本和平面相交——有且只有一個公共點
直線與平面所成的角:平面的'一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角;
b、直線與平面平行或在平面內(nèi),所成的角為0°角。
由此得直線和平面所成角的取值范圍為[0°,90°]。
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中數(shù)學知識點總結 12
一次函數(shù)
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx (k為常數(shù),k0)
二、一次函數(shù)的性質:
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實數(shù)b取任何實數(shù))
2、當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質:
1、作法與圖形:通過如下3個步驟
。1)列表;
。2)描點;
(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2、性質:
。1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點。
3、k,b與函數(shù)圖像所在象限:
當k0時,直線必通過一、三象限,y隨x的增大而增大;
當k0時,直線必通過二、四象限,y隨x的增大而減小。
當b0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
。1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。
。2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個二元一次方程,得到k,b的值。
。4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應用:
1、當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的中點:|x1—x2|/2
3、求與y軸平行線段的中點:|y1—y2|/2
4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數(shù)
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
y=ax^2+bx+c
。╝,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II、二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]
交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質
1、拋物線是軸對稱圖形。對稱軸為直線
x= —b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。
3、二次項系數(shù)a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。
|a|越大,則拋物線的`開口越小。
4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5、常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數(shù)
= b^2—4ac0時,拋物線與x軸有2個交點。
= b^2—4ac=0時,拋物線與x軸有1個交點。
= b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標即為方程的根。
1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式頂點坐標對稱軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,當h0時,則向左平行移動|h|個單位得到、
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、
2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減小;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
。1)圖象與y軸一定相交,交點坐標為(0,c);
。2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點間的距離AB=|x—x|
當△=0、圖象與x軸只有一個交點;
當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0、
5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最。ù螅┲=(4ac—b^2)/4a、
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、
6、用待定系數(shù)法求二次函數(shù)的解析式
。1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、
。3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)、
反比例函數(shù)
形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。
當K0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(xm)m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
高中數(shù)學知識點總結 13
第一章三角函數(shù)
1.1任意角和弧度制
正角、負角、零角正角、負角、零角
象限角、軸線角象限角、軸線角
終邊相同的角終邊相同的角
弧度制、弧度與角度的互化弧度制、弧度與角度的互化
1.2任意角的三角函數(shù)
任意角的三角函數(shù)任意角的三角函數(shù)
三角函數(shù)線(正弦線、余弦線、正切線)三角函數(shù)線(正弦線、余弦線、正切線)
同角三角函數(shù)的基本關系式同角三角函數(shù)的基本關系式
1.3三角函數(shù)的誘導公式
三角函數(shù)的誘導公式三角函數(shù)的'誘導公式
1.4三角函數(shù)的圖象與性質
正弦、余弦函數(shù)的圖象與性質(定義域、值域、單調(diào)性、奇偶性等)正弦、余弦函數(shù)的圖象與性質(定義域、值域、單調(diào)性、奇偶性等)
正切、余切函數(shù)的圖象與性質(定義域、值域、單調(diào)性、奇偶性等)正切、余切函數(shù)的圖象與性質(定義域、值域、單調(diào)性、奇偶性等)
1.5函數(shù)y=Asin(ωxφ)的圖象
函數(shù)y=Asin(ωxφ)的圖象與性質函數(shù)y=Asin(wx φ)的圖象與性質
1.6三角函數(shù)模型的簡單應用
第二章平面向量
2.1平面向量的實際背景及基本概念
向量的概念及幾何表示向量的概念及幾何表示
零向量與單位向量零向量與單位向量
相等向量與共線向量的定義相等向量與共線向量的定義
2.2平面向量的線性運算
向量的加、減法運算及幾何意義向量的加、減法運算及幾何意義
向量數(shù)乘運算及幾何意義向量數(shù)乘運算及幾何意義
向量的線性運算及坐標表示向量的線性運算及坐標表示
2.3平面向量的基本定理及坐標表示
平面向量基本定理及坐標表示平面向量基本定理及坐標表示
向量共線的充要條件及坐標表示向量共線的充要條件及坐標表示
2.4平面向量的數(shù)量積
向量數(shù)量積的含義及幾何意義向量數(shù)量積的含義及幾何意義
向量數(shù)量積的運算向量數(shù)量積的運算
用數(shù)量積判斷兩個向量的垂直關系用數(shù)量積判斷兩個向量的垂直關系
用坐標表示向量的數(shù)量積用坐標表示向量的數(shù)量積
向量模的計算向量模的計算
用數(shù)量積表示兩個向量的夾角用數(shù)量積表示兩個向量的夾角
2.5平面向量應用舉例
平面向量的應用平面向量的應用
第三章三角恒等變換
3.1兩角和與差的正弦、余弦和正切公式
兩角和與差的三角函數(shù)及三角恒等變換兩角和與差的三角函數(shù)及三角恒等變換
3.2簡單的三角恒等變換
兩角和與差的三角函數(shù)及三角恒等變換
【高中數(shù)學知識點總結】相關文章:
高中數(shù)學知識點總結08-10
高中數(shù)學集合知識點總結07-02
高中數(shù)學知識點總結06-25
高中數(shù)學定理知識點總結06-25
高中數(shù)學基本知識點總結06-19
高中數(shù)學幾何定理知識點總結07-02
高中數(shù)學必修2知識點總結11-22
高中數(shù)學必修一知識點總結06-25