在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 奧數(shù)題及答案

    時(shí)間:2022-07-03 08:29:47 求職 我要投稿
    • 相關(guān)推薦

    奧數(shù)題及答案

    以下是PINCAI小編為大家收集的關(guān)于《奧數(shù)題及答案》的相關(guān)內(nèi)容,歡迎大家閱讀參考!

    篇一:四年級(jí)奧數(shù)題及答案

    1、燒水沏茶時(shí),洗水壺要用1分鐘,燒開水要用10分鐘,洗茶壺要用2分鐘,洗茶杯用2分鐘,拿茶葉要用1分鐘,如何安排才能盡早喝上茶。

    2、有137噸貨物要從甲地運(yùn)往乙地,大卡車的載重量是5噸,小卡車的載重量是2噸,大卡車與小卡車每車次的耗油量分別是10公升和5公升,問如何選派車輛才能使運(yùn)輸耗油量最少?這時(shí)共需耗油多少升?

    3、用一只平底鍋烙餅,鍋上只能放兩個(gè)餅,烙熟餅的一面需要2分鐘,兩面共需4分鐘,現(xiàn)在需要烙熟三個(gè)餅,最少需要幾分鐘?

    4、甲、乙、丙、丁四人同時(shí)到一個(gè)小水龍頭處用水,甲洗拖布需要3分鐘,乙洗抹布需要2分鐘,丙用桶接水需要1分鐘,丁洗衣服需要10分鐘,怎樣安排四人的用水順序,才能使他們所花的總時(shí)間最少,并求出這個(gè)總時(shí)間。

    5、甲、乙、丙、丁四個(gè)人過橋,分別需要1分鐘,2分鐘,5分鐘,10分鐘。因?yàn)樘旌,必須借助于手電筒過橋,可是他們總共只有一個(gè)手電筒,并且橋的載重能力有限,最多只能承受兩個(gè)人的重量,也就是說,每次最多過兩個(gè)人,F(xiàn)在希望可以用最短的時(shí)間過橋,怎樣才能做到最短呢?你來幫他們安排一下吧。最短時(shí)間是多少分鐘呢?

    6、小明騎在牛背上趕牛過河,共有甲乙丙丁四頭牛,甲牛過河需1分鐘,乙牛需2分鐘,丙牛需5分鐘,丁牛需6分鐘,每次只能騎一頭牛,趕一頭牛過河。要過河時(shí)間最少?是多少?

    四年級(jí)奧數(shù)題:速算與巧算(一)

    1.【試題】計(jì)算9+99+999+9999+99999

    2【試題】計(jì)算199999+19999+1999+199+19

    3【試題】計(jì)算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)

    4【試題】計(jì)算 9999×2222+3333×3334

    5【試題】56×3+56×27+56×96-56×57+56

    6【試題】計(jì)算98766×98768-98765×98769

    四年級(jí)奧數(shù)題:年齡問題

    1、父親45歲,兒子23歲。問幾年前父親年齡是兒子的2倍?

    2、李老師的年齡比劉紅的2倍多8歲,李老師10年前的年齡和王剛8年后的年齡相等。問李老師和王剛各多少歲?

    3、姐妹兩人三年后年齡之和為27歲,妹妹現(xiàn)在的年齡恰好等于姐姐年齡的一半,求姐妹二人年齡各為多少。

    4、小象問大象媽媽:“媽媽,我長到您現(xiàn)在這么大時(shí),你有多少歲了?”媽媽回答說:“我有28歲了”。小象又問:“您像我這么大時(shí),我有幾歲呢?”媽媽回答:“你才1歲!眴柎笙髬寢層卸嗌贇q了?

    5、大熊貓的年齡是小熊貓的3倍,再過4年,大熊貓的年齡與小熊貓年齡的和為28歲。問大、小熊貓各幾歲?

    6、15年前父親年齡是兒子的7倍,10年后,父親年齡是兒子的2倍。求父親、兒子各多少歲。

    7、王濤的爺爺比奶奶大2歲,爸爸比媽媽大2歲,全家五口人共200歲。已知爺爺年齡是王濤的5倍,爸爸年齡在四年前是王濤的4倍,問王濤全家人各是多少歲?

    四年級(jí)奧數(shù)題:牛吃草問題解析

    歷史起源:英國數(shù)學(xué)家牛頓(16421727)說過:“在學(xué)習(xí)科學(xué)的時(shí)候,題目比規(guī)則還有用些”因此在他的著作中,每當(dāng)闡述理論時(shí),總是把許多實(shí)例放在一起。在牛頓的《普遍的算術(shù)》一書中,有一個(gè)關(guān)于求牛和頭數(shù)的題目,人們稱之為牛頓的牛吃草問題。

    主要類型:

    1、求時(shí)間

    2、求頭數(shù)

    除了總結(jié)這兩種類型問題相應(yīng)的解法,在實(shí)踐中還要有培養(yǎng)運(yùn)用“牛吃草問題”的解題思想解決實(shí)際問題的能力。

    基本思路:

    ①在求出“每天新生長的草量”和“原有草量”后,已知頭數(shù)求時(shí)間時(shí),我們用“原有草量÷每天實(shí)際減少的草量(即頭數(shù)與每日生長量的差)”求出天數(shù)。

    ②已知天數(shù)求只數(shù)時(shí),同樣需要先求出“每天新生長的草量”和“原有草量”。

    ③根據(jù)(“原有草量”+若干天里新生草量)÷天數(shù)”,求出只數(shù)。

    基本公式:

    解決牛吃草問題常用到四個(gè)基本公式,分別是∶

    (1)草的生長速度=對(duì)應(yīng)的牛頭數(shù)×吃的較多天數(shù)-相應(yīng)的牛頭數(shù)×吃的較少天數(shù)÷(吃的較多天數(shù)-吃的較少天數(shù));

    (2)原有草量=牛頭數(shù)×吃的天數(shù)-草的生長速度×吃的天數(shù);

    (3)吃的天數(shù)=原有草量÷(牛頭數(shù)-草的生長速度);

    (4)牛頭數(shù)=原有草量÷吃的天數(shù)+草的生長速度

    第一種:一般解法

    “有一牧場,已知養(yǎng)牛27頭,6天把草吃盡;養(yǎng)牛23頭,9天把草吃盡。如果養(yǎng)牛21頭,那么幾天能把牧場上的草吃盡呢?并且牧場上的草是不斷生長的!

    一般解法:把一頭牛一天所吃的牧草看作1,那么就有:

    (1)27頭牛6天所吃的牧草為:27×6=162 (這162包括牧場原有的草和6天新長的草。)

    (2)23頭牛9天所吃的牧草為:23×9=207 (這207包括牧場原有的草和9天新長的草。)

    (3)1天新長的草為:(207-162)÷(9-6)=15

    (4)牧場上原有的草為:27×6-15×6=72

    (5)每天新長的草足夠15頭牛吃,21頭牛減去15頭,剩下6頭吃原牧場的草:72÷(21-15)=72÷6=12(天)

    所以養(yǎng)21頭牛,12天才能把牧場上的草吃盡。

    第二種:公式解法

    有一片牧場,草每天都勻速生長(草每天增長量相等),如果放牧24頭牛,則6天吃完牧草,如果放牧21頭牛,則8天吃完牧草,假設(shè)每頭牛吃草的量是相等的。(1)如果放牧16頭牛,幾天可以吃完牧草?(2)要使牧草永遠(yuǎn)吃不完,最多可放多少頭牛?

    解答:

    1) 草的生長速度:(21×8-24×6)÷(8-6)=12(份)

    原有草量:21×8-12×8=72(份)

    16頭?沙裕72÷(16-12)=18(天)

    2) 要使牧草永遠(yuǎn)吃不完,則每天吃的份數(shù)不能多于草每天的生長份數(shù)

    所以最多只能放12頭牛。

    小學(xué)四年級(jí)奧數(shù)題及答案和題目分析

    一、按規(guī)律填數(shù)。

    1)64,48,40,36,34,( )

    2)8,15,10,13,12,11,( )

    3)1、4、5、8、9、( )、13、( )、( )

    4)2、4、5、10、11、( )、( )

    5)5,9,13,17,21,( ),( )

    二、等差數(shù)列

    1.在等差數(shù)列3,12,21,30,39,48,…中912是第幾個(gè)數(shù)?

    2.求1至100內(nèi)所有不能被5或9整除的整數(shù)和

    3.把210拆成7個(gè)自然數(shù)的和,使這7個(gè)數(shù)從小到大排成一行后,相鄰兩個(gè)數(shù)的差都是5,那么,第1個(gè)數(shù)與第6個(gè)數(shù)分別是多少?

    4.把從1開始的所有奇數(shù)進(jìn)行分組,其中每組的第一個(gè)數(shù)都等于此組中所有數(shù)的個(gè)數(shù),如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5組中所有數(shù)的和

    三、平均數(shù)問題

    1.已知9個(gè)數(shù)的平均數(shù)是72,去掉一個(gè)數(shù)后,余下的數(shù)平均數(shù)為78,去掉的數(shù)是______ .

    2.某班有40名學(xué)生,期中數(shù)學(xué)考試,有兩名同學(xué)因故缺考,這時(shí)班級(jí)平均分為89分,缺考的同學(xué)補(bǔ)考各得99分,這個(gè)班級(jí)中考平均分是_______ .

    3.今年前5個(gè)月,小明每月平均存錢4.2元,從6月起他每月儲(chǔ)蓄6元,那么從哪個(gè)月起小明的平均儲(chǔ)蓄超過5元?

    4.A、B、C、D四個(gè)數(shù),每次去掉一個(gè)數(shù),將其余下的三個(gè)數(shù)求平均數(shù),這樣計(jì)算了4次,得到下面4個(gè)數(shù).

    23, 26, 30, 33

    A、B、C、D 4個(gè)數(shù)的平均數(shù)是多少?

    5 A、B、C、D4個(gè)數(shù),每次去掉一個(gè)數(shù),將其余3個(gè)數(shù)求平均數(shù),這樣計(jì)算了4次得到下面4個(gè)數(shù)23、26、30、33,A、B、C、D4個(gè)數(shù)的和是。

    四、加減乘除的簡便運(yùn)算

    1)100-98+96-94+92-90+……+8-6+4-2=()

    2)1976+1977+……2000-1975-1976-……-1999=()

    3)26×99 =()

    4)67×12+67×35+67×52+67=()

    5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

    五、數(shù)陣圖

    1、△、□、分別代表三個(gè)不同的數(shù),并且;

    △+△+△=+;+++=□+□+□;△+++□=60

    求:△= = □=

    2.將九個(gè)連續(xù)自然數(shù)填入3行3列的九個(gè)空格中,使每一橫行及每一豎列的三個(gè)數(shù)之和都等于60.

    3.將從1開始的九個(gè)連續(xù)奇數(shù)填入3行3列的九個(gè)空格中,使每一橫行、每一豎列及兩條對(duì)角線上的三個(gè)數(shù)之和都相等.

    4 用1至9這9個(gè)數(shù)編制一個(gè)三階幻方,寫出所有可能的結(jié)果。所謂幻方是指在正方形的方格表的每個(gè)方格內(nèi)填入不同的數(shù),使得每行、每列和兩條對(duì)角線上的各數(shù)之和相等;而階數(shù)是指每行、每列所包含的方格的數(shù)。

    六、和差倍問題

    1.果園里一共種340棵桃樹和杏樹,其中桃樹的棵數(shù)比杏樹的3倍多20棵,兩種樹各種了多少棵?

    2.一個(gè)長方形,周長是30厘米,長是寬的2倍,求這個(gè)長方形的面積。

    3.甲、乙兩個(gè)數(shù),如果甲數(shù)加上320就等于乙數(shù)了.如果乙數(shù)加上460就等于甲數(shù)的3倍,兩個(gè)數(shù)各是多少?

    4.有兩塊同樣長的布,第一塊賣出25米,第二塊賣出14米,剩下的布第二塊是第一塊的2倍,求每塊布原有多少米?

    5.果園里有桃樹和梨樹共150棵,桃樹比梨樹多20棵,兩種果樹各有多少棵?

    6.甲、乙兩桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么兩桶油重量相等,問甲、乙兩桶原有多少油?

    七、年齡問題

    1.兄弟倆今年的年齡和是30歲,當(dāng)哥哥像弟弟現(xiàn)在這樣大時(shí),弟弟的年齡恰好是哥哥年齡的一半,哥哥今年幾歲?

    2.母女的年齡和是64歲,女兒年齡的3倍比母親大8歲,求母女二人的年齡各是多少歲?

    3.哥哥今年比小麗大12歲,8年前哥哥的年齡是小麗的4倍,今年二人各幾歲?

    4.爺爺今年72歲,孫子今年12歲,幾年后爺爺?shù)哪挲g是孫子的5倍?幾年前爺爺?shù)哪挲g是孫子的13倍?

    八、假設(shè)問題

    1、有42個(gè)同學(xué)參加植樹,男生平均每人種3棵,女生平均每人種2棵,男生比女生多種56棵.男、女生各多少人?

    2.某小學(xué)舉行一次數(shù)學(xué)競賽,共15道題,每做對(duì)一題得8分,每做錯(cuò)一題倒扣4分,小明共得了72分,他做對(duì)了多少道題?

    3.一張?jiān)嚲碛?5道題,答對(duì)一題得4分,答錯(cuò)或不答均倒扣1分,某同學(xué)共得60分,他答對(duì)了多少道題?

    4.小華解答數(shù)學(xué)判斷題,答對(duì)一題給4分,答錯(cuò)一題要倒扣4分,她答了20個(gè)判斷題,結(jié)果只得了56分,她答錯(cuò)了多少道題?

    5. 育才小學(xué)五年級(jí)舉行數(shù)學(xué)競賽,共10道題,每做對(duì)一道題得8分,錯(cuò)一題倒扣5分,張小靈最終得分為41分,她做對(duì)了多少道題?

    和差倍

    果園里有梨樹、桃樹、核桃樹共526棵,梨樹比桃樹的2倍多24棵,核桃樹比桃樹少18棵.求梨樹、桃樹及核桃樹各有多少棵?

    1、在□中填入適當(dāng)?shù)臄?shù)字,使乘法豎式成立。

    2、在□中填入適當(dāng)?shù)臄?shù)字,使除法豎式成立。

    1、天天帶了一些蘋果和梨到敬老院慰問。每次從籃里取出2個(gè)梨和4個(gè)蘋果送給老人,最后當(dāng)梨正好分完時(shí),還剩下27個(gè)蘋果。這時(shí)他才想起原來蘋果是梨的3倍多3個(gè)。原有蘋果、梨各多少個(gè)?

    2、40名同學(xué)在做3道數(shù)學(xué)題時(shí),有25人做對(duì)第一題,有28人做對(duì)第二題,有31人做對(duì)第三題。那么至少有多少人做對(duì)了三道題?

    答案:

    1.先洗水壺然后燒開水,在燒水的時(shí)候去洗茶壺、洗茶杯、拿茶葉。共需要1+10=11分鐘。

    2.大卡車每噸耗油量為10÷5=2(公升);小卡車每噸耗油量為5÷2=2.5(公升)。為了節(jié)省汽油應(yīng)盡量選派大卡車運(yùn)貨,又由于137=5×27+2,因此,最優(yōu)調(diào)運(yùn)方案是:選派27車次大卡車及1車次小卡車即可將貨物全部運(yùn)完,且這時(shí)耗油量最少,只需用油10×27+5×1=275(公升)

    3.一般的做法是先同時(shí)烙兩張餅,需要4分鐘,之后再烙第三張餅,還要用4分鐘,共需8分鐘,但我們注意到,在單獨(dú)烙第三張餅的時(shí)候,另外一個(gè)烙餅的位置是空的,這說明可能浪費(fèi)了時(shí)間,怎么解決這個(gè)問題呢?我們可以先烙第一、二兩張餅的第一面,2分鐘后,拿下第一張餅,放上第三張餅,并給第二張餅翻面,再過兩分鐘,第二張餅烙好了,這時(shí)取下第二張餅,并將第三張餅翻過來,同時(shí)把第一張餅未烙的一面放上。兩分鐘后,第一張和第三張餅也烙好了,整個(gè)過程用了6分鐘。

    4.所花的總時(shí)間是指這四人各自所用時(shí)間與等待時(shí)間的總和,由于各自用水時(shí)間是固定的,所以只能想辦法減少等待的時(shí)間,即應(yīng)該安排用水時(shí)間少的人先用。

    解:應(yīng)按丙,乙,甲,丁順序用水。

    丙等待時(shí)間為0,用水時(shí)間1分鐘,總計(jì)1分鐘

    乙等待時(shí)間為丙用水時(shí)間1分鐘,乙用水時(shí)間2分鐘,總計(jì)3分鐘

    甲等待時(shí)間為丙和乙用水時(shí)間3分鐘,甲用水時(shí)間3分鐘,總計(jì)6分鐘

    丁等待時(shí)間為丙、乙和甲用水時(shí)間共6分鐘,丁用水時(shí)間10分鐘,總計(jì)16分鐘,

    總時(shí)間為1+3+6+16=26分鐘。

    5.大家都很容易想到,讓甲、乙搭配,丙、丁搭配應(yīng)該比較節(jié)省時(shí)間。而他們只有一個(gè)手電筒,每次又只能過兩個(gè)人,所以每次過橋后,還得有一個(gè)人返回送手電筒。為了節(jié)省時(shí)間,肯定是盡可能讓速度快的人承擔(dān)往返送手電筒的任務(wù)。那么就應(yīng)該讓甲和乙先過橋,用時(shí)2分鐘,再由甲返回送手電筒,需要1分鐘,然后丙、丁搭配過橋,用時(shí)10分鐘。接下來乙返回,送手電筒,用時(shí)2分鐘,再和甲一起過橋,又用時(shí)2分鐘。所以花費(fèi)的總時(shí)間為:2+1+10+2+2=17分鐘。

    解:2+1+10+2+2=17分鐘

    6.要使過河時(shí)間最少,應(yīng)抓住以下兩點(diǎn):(1)同時(shí)過河的兩頭牛過河時(shí)間差要盡可能小(2)過河后應(yīng)騎用時(shí)最少的牛回來。

    解:小明騎在甲牛背上趕乙牛過河后,再騎甲牛返回,用時(shí)2+1=3分鐘

    然后騎在丙牛背上趕丁牛過河后,再騎乙牛返回,用時(shí)6+2=8分鐘

    最后騎在甲牛背上趕乙牛過河,不用返回,用時(shí)2分鐘。

    總共用時(shí)(2+1)+(6+2)+2=13分鐘。

    1.【解析】在涉及所有數(shù)字都是9的計(jì)算中,常使用湊整法。例如將999化成10001去計(jì)算。這是小學(xué)數(shù)學(xué)中常用的一種技巧。

    9+99+999+9999+99999

    =(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)

    =10+100+1000+10000+100000-5  =111110-5  =111105

    2【解析】此題各數(shù)字中,除最高位是1外,其余都是9,仍使用湊整法。不過這里是加1湊整。(如 199+1=200)

    199999+19999+1999+199+19

    =(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5

    =200000+20000+2000+200+20-5  =222220-5  =22225

    3【分析】:題目要求的是從2到1000的偶數(shù)之和減去從1到999的奇數(shù)之和的差,如果按照常規(guī)的運(yùn)算法則去求解,需要計(jì)算兩個(gè)等差數(shù)列之和,比較麻煩。但是觀察兩個(gè)擴(kuò)號(hào)內(nèi)的對(duì)應(yīng)項(xiàng),可以發(fā)現(xiàn)2-1=4-3=6-5=…1000-999=1,因此可以對(duì)算式進(jìn)行分組運(yùn)算。

    解:解法一、分組法

    (2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

    =(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)

    =1+1+1+…+1+1+1(500個(gè)1)=500

    解法二、等差數(shù)列求和

    (2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

    =(2+1000)×500÷2-(1+999)×500÷2

    =1002×250-1000×250=(1002-1000)×250=500

    4【分析】此題如果直接乘,數(shù)字較大,容易出錯(cuò)。如果將9999變?yōu)?333×3,規(guī)律就出現(xiàn)了。

    9999×2222+3333×3334  =3333×3×2222+3333×3334

    =3333×6666+3333×3334  =3333×(6666+3334)  =3333×10000

    =33330000。

    5.【分析】:乘法分配律同樣適合于多個(gè)乘法算式相加減的情況,在計(jì)算加減混合運(yùn)算時(shí)要特別注意,提走公共乘數(shù)后乘數(shù)前面的符號(hào)。同樣的,乘法分配率也可以反著用,即將一個(gè)乘數(shù)湊成一個(gè)整數(shù),再補(bǔ)上他們的和或是差。

    56×3+56×27+56×96-56×57+56

    =56×(32+27+96-57+1)=56×99=56×(100-1)=56×100-56×1

    =5600-56=5544

    6. 【分析】:將乘數(shù)進(jìn)行拆分后可以利用乘法分配律,將98766拆成(98765+1),將98769拆成(98768+1),這樣就保證了減號(hào)兩邊都有相同的項(xiàng)。

    解:98766×98768-98765×98769

    =(98765+1)×98768-98765×(98768+1)

    =98765×98768+98768-(98765×98768+98765)

    =98765×98768+98768-98765×98768-98765=98768-98765=3

    年齡問題【答案】:

    1、一年前。

    2、劉紅10歲,李老師28歲。

    (10+8-8)÷(2-1)=10(歲)。

    3、妹妹7歲。姐姐14歲。

    [27-(3×2)]÷(2+1)=7(歲)。

    4、小象10歲,媽媽19歲。

    (28-1)÷3+1=10(歲)。

    5、大熊貓15歲,小熊貓5歲。

    (28-4×2)÷(3+1)=5(歲)。

    6、父親50歲,兒子20歲。

    (15+10)÷(7-2)+15=20(歲)

    7、王濤 12歲,媽媽34歲。爸爸36歲,奶奶58歲,爺爺 60歲。

    提示:爸爸年齡四年前是王濤的4倍,那么現(xiàn)在的年齡是王濤的4倍少12歲。

    (200+2+12+12+2)÷(1+5+5+4+4)=12(歲)。

    篇二:奧數(shù)題及答案

    過橋問題(1)

    1. 一列火車經(jīng)過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?

    分析:這道題求的是通過時(shí)間.根據(jù)數(shù)量關(guān)系式,我們知道要想求通過時(shí)間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.

    總路程: (米)

    通過時(shí)間: (分鐘)

    答:這列火車通過長江大橋需要17.1分鐘.

    2. 一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?

    分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時(shí)間這兩個(gè)條件.可以用已知條件橋長和車長求出路程,通過時(shí)間也是已知條件,所以車速可以很方便求出.

    總路程: (米)

    火車速度: (米)

    答:這列火車每秒行30米.

    3. 一列火車長240米,這列火車每秒行15米,從車頭進(jìn)山洞到全車出山洞共用20秒,山洞長多少米?

    分析與火車過山洞和火車過橋的思路是一樣的.火車頭進(jìn)山洞就相當(dāng)于火車頭上橋;全車出洞就相當(dāng)于車尾下橋.這道題求山洞的長度也就相當(dāng)于求橋長,我們就必須知道總路程和車長,車長是已知條件,那么我們就要利用題中所給的車速和通過時(shí)間求出總路程.

    總路程:

    山洞長: (米)

    答:這個(gè)山洞長60米.

    和倍問題

    1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?

    我們把秦奮的年齡作為1倍,“媽媽的年齡是秦奮的4倍”,這樣秦奮和媽媽年齡的和就相當(dāng)于秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那么求1倍是多少,接著再求4倍是多少?

    (1)秦奮和媽媽年齡倍數(shù)和是:4+1=5(倍)

    (2)秦奮的年齡:40÷5=8歲

    (3)媽媽的年齡:8×4=32歲

    綜合:40÷(4+1)=8歲 8×4=32歲

    為了保證此題的正確,驗(yàn)證

    (1)8+32=40歲 (2)32÷8=4(倍)

    計(jì)算結(jié)果符合條件,所以解題正確.

    2. 甲乙兩架飛機(jī)同時(shí)從機(jī)場向相反方向飛行,3小時(shí)共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?

    已知兩架飛機(jī)3小時(shí)共飛行3600千米,就可以求出兩架飛機(jī)每小時(shí)飛行的航程,也就是兩架飛機(jī)的速度和.看圖可知,這個(gè)速度和相當(dāng)于乙飛機(jī)速度的3倍,這樣就可以求出乙飛機(jī)的速度,再根據(jù)乙飛機(jī)的速度求出甲飛機(jī)的速度.

    甲乙飛機(jī)的速度分別每小時(shí)行800千米、400千米.

    3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?

    思考:(1)哥哥在給弟弟課外書前后,題目中不變的數(shù)量是什么?

    (2)要想求哥哥給弟弟多少本課外書,需要知道什么條件?

    (3)如果把哥哥剩下的課外書看作1倍,那么這時(shí)(哥哥給弟弟課外書后)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?

    思考以上幾個(gè)問題的基礎(chǔ)上,再求哥哥應(yīng)該給弟弟多少本課外書.根據(jù)條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那么這時(shí)弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數(shù)相當(dāng)于哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數(shù)始終是不變的數(shù)量.

    (1)兄弟倆共有課外書的數(shù)量是20+25=45.

    (2)哥哥給弟弟若干本課外書后,兄弟倆共有的倍數(shù)是2+1=3.

    (3)哥哥剩下的課外書的本數(shù)是45÷3=15.

    (4)哥哥給弟弟課外書的本數(shù)是25-15=10.

    試著列出綜合算式:

    4. 甲乙兩個(gè)糧庫原來共存糧170噸,后來從甲庫運(yùn)出30噸,給乙?guī)爝\(yùn)進(jìn)10噸,這時(shí)甲庫存糧是乙?guī)齑婕Z的2倍,兩個(gè)糧庫原來各存糧多少噸?

    根據(jù)甲乙兩個(gè)糧庫原來共存糧170噸,后來從甲庫運(yùn)出30噸,給乙?guī)爝\(yùn)進(jìn)10噸,可求出這時(shí)甲、乙兩庫共存糧多少噸.根據(jù)“這時(shí)甲庫存糧是乙?guī)齑婕Z的2倍”,如果這時(shí)把乙?guī)齑婕Z作為1倍,那么甲、乙?guī)焖婕Z就相當(dāng)于乙存糧的3倍.于是求出這時(shí)乙?guī)齑婕Z多少噸,進(jìn)而可求出乙?guī)煸瓉泶婕Z多少噸.最后就可求出甲庫原來存糧多少噸.

    甲庫原存糧130噸,乙?guī)煸婕Z40噸.

    列方程組解應(yīng)用題(一)

    1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個(gè),或制盒底43個(gè),一個(gè)盒身和兩個(gè)盒底配成一個(gè)罐頭盒,現(xiàn)有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?

    依據(jù)題意可知這個(gè)題有兩個(gè)未知量,一個(gè)是制盒身的鐵皮張數(shù),一個(gè)是制盒底的鐵皮張數(shù),這樣就可以用兩個(gè)未知數(shù)表示,要求出這兩個(gè)未知數(shù),就要從題目中找出兩個(gè)等量關(guān)系,列出兩個(gè)方程,組在一起,就是方程組.

    兩個(gè)等量關(guān)系是:A做盒身張數(shù)+做盒底的張數(shù)=鐵皮總張數(shù)

    B制出的盒身數(shù)×2=制出的盒底數(shù)

    用86張白鐵皮做盒身,64張白鐵皮做盒底.

    奇數(shù)與偶數(shù)(一)

    其實(shí),在日常生活中同學(xué)們就已經(jīng)接觸了很多的奇數(shù)、偶數(shù).

    凡是能被2整除的數(shù)叫偶數(shù),大于零的偶數(shù)又叫雙數(shù);凡是不能被2整除的數(shù)叫奇數(shù),大于零的奇數(shù)又叫單數(shù).

    因?yàn)榕紨?shù)是2的倍數(shù),所以通常用 這個(gè)式子來表示偶數(shù)(這里 是整數(shù)).因?yàn)槿魏纹鏀?shù)除以2其余數(shù)都是1,所以通常用式子 來表示奇數(shù)(這里 是整數(shù)).

    奇數(shù)和偶數(shù)有許多性質(zhì),常用的有:

    性質(zhì)1 兩個(gè)偶數(shù)的和或者差仍然是偶數(shù).

    例如:8+4=12,8-4=4等.

    兩個(gè)奇數(shù)的和或差也是偶數(shù).

    例如:9+3=12,9-3=6等.

    奇數(shù)與偶數(shù)的和或差是奇數(shù).

    例如:9+4=13,9-4=5等.

    單數(shù)個(gè)奇數(shù)的和是奇,雙數(shù)個(gè)奇數(shù)的和是偶數(shù),幾個(gè)偶數(shù)的和仍是偶數(shù).

    性質(zhì)2 奇數(shù)與奇數(shù)的積是奇數(shù).

    偶數(shù)與整數(shù)的積是偶數(shù).

    性質(zhì)3 任何一個(gè)奇數(shù)一定不等于任何一個(gè)偶數(shù).

    1. 有5張撲克牌,畫面向上.小明每次翻轉(zhuǎn)其中的4張,那么,他能在翻動(dòng)若干次后,使5張牌的畫面都向下嗎?

    同學(xué)們可以試驗(yàn)一下,只有將一張牌翻動(dòng)奇數(shù)次,才能使它的畫面由向上變?yōu)橄蛳?要想使5張牌的畫面都向下,那么每張牌都要翻動(dòng)奇數(shù)次.

    5個(gè)奇數(shù)的和是奇數(shù),所以翻動(dòng)的總張數(shù)為奇數(shù)時(shí)才能使5張牌的牌面都向下.而小明每次翻動(dòng)4張,不管翻多少次,翻動(dòng)的總張數(shù)都是偶數(shù).

    所以無論他翻動(dòng)多少次,都不能使5張牌畫面都向下.

    2. 甲盒中放有180個(gè)白色圍棋子和181個(gè)黑色圍棋子,乙盒中放有181個(gè)白色圍棋子,李平每次任意從甲盒中摸出兩個(gè)棋子,如果兩個(gè)棋子同色,他就從乙盒中拿出一個(gè)白子放入甲盒;如果兩個(gè)棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一個(gè)棋子,這個(gè)棋子是什么顏色的?

    不論李平從甲盒中拿出兩個(gè)什么樣的棋子,他總會(huì)把一個(gè)棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數(shù)就減少一個(gè),所以他拿180+181-1=360次后,甲盒里只剩下一個(gè)棋子.

    如果他拿出的是兩個(gè)黑子,那么甲盒中的黑子數(shù)就減少兩個(gè).否則甲盒子中的黑子數(shù)不變.也就是說,李平每次從甲盒子拿出的黑子數(shù)都是偶數(shù).由于181是奇數(shù),奇數(shù)減偶數(shù)等于奇數(shù).所以,甲盒中剩下的黑子數(shù)應(yīng)是奇數(shù),而不大于1的奇數(shù)只有1,所以甲盒里剩下的一個(gè)棋子應(yīng)該是黑子.

    奧賽專題 -- 稱球問題

    例1 有4堆外表上一樣的球,每堆4個(gè).已知其中三堆是正品、一堆是次品,正品球每個(gè)重10克,次品球每個(gè)重11克,請(qǐng)你用天平只稱一次,把是次品的那堆找出來.

    解 :依次從第一、二、三、四堆球中,各取1、2、3、4個(gè)球,這10個(gè)球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.

    2 有27個(gè)外表上一樣的球,其中只有一個(gè)是次品,重量比正品輕,請(qǐng)你用天平只稱三次(不用砝碼),把次品球找出來.

    解 :第一次:把27個(gè)球分為三堆,每堆9個(gè),取其中兩堆分別放在天平的兩個(gè)盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.

    第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個(gè)球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.

    第三次:從第二次找出的較輕的一堆3個(gè)球中取出2個(gè)稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個(gè)未稱的就是次品.

    例3 把10個(gè)外表上一樣的球,其中只有一個(gè)是次品,請(qǐng)你用天平只稱三次,把次品找出來.

    把10個(gè)球分成3個(gè)、3個(gè)、3個(gè)、1個(gè)四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個(gè)盤上去稱,則

    (1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個(gè)球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個(gè)球來稱,便可得出結(jié)論.如BC的情況也可得出結(jié)論.

    (2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或BC不可能,為什么?)如B=C,則次品在A中且次品比正品重,再在A中取出2個(gè)球來稱,便可得出結(jié)論;如B<c,仿前也可得出結(jié)論.< p="">

    (3)若AB的情況,可分析得出結(jié)論.

    奧賽專題 -- 抽屜原理

    【例1】一個(gè)小組共有13名同學(xué),其中至少有2名同學(xué)同一個(gè)月過生日.為什么?

    【分析】每年里共有12個(gè)月,任何一個(gè)人的生日,一定在其中的某一個(gè)月.如果把這12個(gè)月看成12個(gè)“抽屜”,把13名同學(xué)的生日看成13只“蘋果”,把13只蘋果放進(jìn)12個(gè)抽屜里,一定有一個(gè)抽屜里至少放2個(gè)蘋果,也就是說,至少有2名同學(xué)在同一個(gè)月過生日.

    【例 2】任意4個(gè)自然數(shù),其中至少有兩個(gè)數(shù)的差是3的倍數(shù).這是為什么?

    【分析與解】首先我們要弄清這樣一條規(guī)律:如果兩個(gè)自然數(shù)除以3的余數(shù)相同,那么這兩個(gè)自然數(shù)的差是3的倍數(shù).而任何一個(gè)自然數(shù)被3除的余數(shù),或者是0,或者是1,或者是2,根據(jù)這三種情況,可以把自然數(shù)分成3類,這3種類型就是我們要制造的3個(gè)“抽屜”.我們把4個(gè)數(shù)看作“蘋果”,根據(jù)抽屜原理,必定有一個(gè)抽屜里至少有2個(gè)數(shù).換句話說,4個(gè)自然數(shù)分成3類,至少有兩個(gè)是同一類.既然是同一類,那么這兩個(gè)數(shù)被3除的余數(shù)就一定相同.所以,任意4個(gè)自然數(shù),至少有2個(gè)自然數(shù)的差是3的倍數(shù).

    【例3】有規(guī)格尺寸相同的5種顏色的襪子各15只混裝在箱內(nèi),試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?

    【分析與解】試想一下,從箱中取出6只、9只襪子,能配成3雙襪子嗎?回答是否定的.

    【奧數(shù)題及答案】相關(guān)文章:

    小學(xué)奧數(shù)的不丟分技巧09-26

    奧數(shù)考試1200字作文07-04

    數(shù)奧繪畫大戰(zhàn)300字作文07-04

    數(shù)學(xué)奧數(shù)培訓(xùn)廣告語01-21

    我的奧數(shù)老師作文03-07

    豐碑閱讀題及答案06-01

    社戲的閱讀題答案08-04

    以答案為題的作文04-13

    奧數(shù)考試考多少分算優(yōu)秀09-13

    笑冰心閱讀題及答案07-05