在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 初三數(shù)學(xué)知識點(diǎn)總結(jié)

    時間:2022-07-28 18:57:56 總結(jié)范文 我要投稿

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)

      總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它能幫我們理順知識結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),不如靜下心來好好寫寫總結(jié)吧。總結(jié)怎么寫才能發(fā)揮它的作用呢?以下是小編收集整理的北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)1

      三角形的外心定義:

      外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。

      外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的.外心。

      三角形的外心的性質(zhì):

      1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;

      2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;

      3、銳角三角形的外心在三角形內(nèi);

      鈍角三角形的外心在三角形外;

      直角三角形的外心與斜邊的中點(diǎn)重合。

      在△ABC中

      4、OA=OB=OC=R

      5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

      6、S△ABC=abc/4R

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)2

      1.不在同一直線上的三點(diǎn)確定一個圓。

      2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧

     、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2圓的兩條平行弦所夾的弧相等

      3.圓是以圓心為對稱中心的中心對稱圖形

      4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      7.同圓或等圓的半徑相等

      8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

      9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      11定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

      12.①直線L和⊙O相交d

     、谥本L和⊙O相切d=r

     、壑本L和⊙O相離d>r

      13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

      15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

      16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      17.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

      19.如果兩個圓相切,那么切點(diǎn)一定在連心線上

      20.①兩圓外離d>R+r ②兩圓外切d=R+r

      ③.兩圓相交R-rr

     、.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr

      21.定理相交兩圓的連心線垂直平分兩圓的公共弦

      22.定理把圓分成nn≥3:

     、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形

      ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形

      23.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      24.正n邊形的每個內(nèi)角都等于n-2×180°/n

      25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

      27.正三角形面積√3a/4 a表示邊長

      28.如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×n-2180°/n=360°化為n-2k-2=4

      29.弧長計(jì)算公式:L=n兀R/180

      30.扇形面積公式:S扇形=n兀R^2/360=LR/2

      31.內(nèi)公切線長= d-R-r外公切線長= d-R+r

      32.定理一條弧所對的圓周角等于它所對的圓心角的一半

      33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑

      35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr

      初三數(shù)學(xué)復(fù)習(xí)方法

      一、回歸課本,夯實(shí)基礎(chǔ),做好預(yù)習(xí)。

      數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點(diǎn)之間的內(nèi)在聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是復(fù)習(xí)的重中之重;貧w課本,要先對知識點(diǎn)進(jìn)行梳理,把教材上的每一個例題、習(xí)題再做一遍,確;靖拍、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達(dá)。復(fù)習(xí)課的內(nèi)容多、時間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒有預(yù)習(xí),聽老師講課,會感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,提高學(xué)習(xí)效率。

      二、提高課堂聽課效率,多動腦,勤動手

      初三的課只有兩種形式:復(fù)習(xí)課和評講課,到初三所有課都進(jìn)入復(fù)習(xí)階段,通過復(fù)習(xí),學(xué)生要知道自己哪些知識點(diǎn)掌握的比較好,哪些知識點(diǎn)有待提高,因此在復(fù)習(xí)課之前一定要有自已的思考,這樣聽課的目的就明確了。現(xiàn)在學(xué)生手中都會有一些復(fù)習(xí)資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的舊知識,可進(jìn)行查漏補(bǔ)缺,以減少聽課過程中的困難,自己理解了的`東西與老師的講解進(jìn)行比較、分析即可提高自己的數(shù)學(xué)思維;體會分析問題的思路和解決問題的思想方法,堅(jiān)持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點(diǎn),重點(diǎn)要作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。

      三、建立錯題本,查漏補(bǔ)缺

      初三復(fù)習(xí),各類試題要做幾十套,甚至上百套。特級教師提醒學(xué)生可以建立一個錯題本,把平時做錯的題系統(tǒng)的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標(biāo)記,以后再看這本書時就會有所側(cè)重。查漏補(bǔ)缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學(xué)會“舉一反三,融會貫通”,及時歸納總結(jié)。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。

      初三數(shù)學(xué)學(xué)習(xí)建議

      培養(yǎng)良好的學(xué)習(xí)習(xí)慣

      1制定計(jì)劃。從而使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計(jì)劃一定要切實(shí)可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨練學(xué)習(xí)意志。

      2課前自學(xué)。這是上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。

      3專心上課。“學(xué)然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。課前自學(xué)過的學(xué)生上課更能專心聽課,他們知道什么地方該詳細(xì)聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。

      4及時復(fù)習(xí)。這是高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會”。

      5獨(dú)立作業(yè)。這是掌握獨(dú)立思考,分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的必要過程。這一過程也是對學(xué)生意志毅力的考驗(yàn),通過作業(yè)練習(xí)使學(xué)生對所學(xué)知識由“會”到“熟”。

      6解決疑難。這是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請教老師和同學(xué),并經(jīng)常把容易錯的地方拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識,長期堅(jiān)持使對所學(xué)知識由“熟”到“活”。

      7系統(tǒng)小結(jié)。這是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。

      8課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),包括閱讀課外書籍與報(bào)刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展學(xué)生的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)3

      1、弧長公式

      n°的圓心角所對的弧長l的計(jì)算公式為L=nπr/180

      2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.

      S=﹙n/360﹚πR2=1/2×lR

      3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.

      S=1/2×l×2πr=πrl

      4、弦切角定理

      弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.

      弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.

      一、選擇題

      1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()

      A.24πcm2B.36πcm2C.12cm2D.24cm2

      考點(diǎn):圓柱的計(jì)算.

      分析:圓柱的側(cè)面積=底面周長×高,把相應(yīng)數(shù)值代入即可求解.

      解答:解:圓柱的側(cè)面積=2π×3×4=24π.

      故選A.

      點(diǎn)評:本題考查了圓柱的計(jì)算,解題的`關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.

      2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長是()

      A.B.C.D.

      考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長的計(jì)算.

      分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結(jié)論.

      解答:解:連接OC,

      ∵△ACE中,AC=2,AE=,CE=1,

      ∴AE2+CE2=AC2,

      ∴△ACE是直角三角形,即AE⊥CD,

      ∵sinA==,

      ∴∠A=30°,

      ∴∠COE=60°,

      ∴=sin∠COE,即=,解得OC=,

      ∵AE⊥CD,

      ∴=,

      ∴===.

      故選B.

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)4

      全套教科書包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個有機(jī)的整體。

      九年級上冊包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個領(lǐng)域。本冊書內(nèi)容分析如下:

      第21章二次根式

      學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會遇到二次根式!岸胃健币徽戮蛠碚J(rèn)識這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

      在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

      注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

      并運(yùn)用它們進(jìn)行二次根式的化簡。

      “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

      第22章一元二次方程

      學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J(rèn)識這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。

      本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,

      “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

      (1)在介紹配方法時,首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個內(nèi)容會有進(jìn)一步的理解。

      (2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

      (3)在介紹因式分解法時,首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。

      “22.3實(shí)際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動等問題,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的一個有效的數(shù)學(xué)模型。

      第23章旋轉(zhuǎn)

      學(xué)生已經(jīng)認(rèn)識了平移、軸對稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來認(rèn)識這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識中心對稱和中心對稱圖形。

      “23.1旋轉(zhuǎn)”一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。

      “23.2中心對稱”一節(jié)首先通過實(shí)例介紹中心對稱的概念。然后讓學(xué)生探究中心對稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個圖形成中心對稱的圖形的方法。

      “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。

      第24章圓

      圓是一種常見的`圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識圓,探索它的性質(zhì),并用這些知識解決一些實(shí)際問題。通過這一章的學(xué)習(xí),學(xué)生的解決圖形問題的能力將會進(jìn)一步提高。

      “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問題。接下來,讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。

      “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。

      “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

      “24.4弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

      第25章概率初步

      將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識這個問題了。掌握了概率的初步知識,學(xué)生還會解決更多的實(shí)際問題。

      “25.1概率”一節(jié)首先通過實(shí)例介紹隨機(jī)事件的概念,然后通過擲幣問題引出概率的概念。

      “25.2用列舉法求概率”一節(jié)首先通過具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

      “25.3利用頻率估計(jì)概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計(jì)概率的方法。

      “25.4課題學(xué)習(xí)鍵盤上字母的排列規(guī)律”一節(jié)讓學(xué)生通過這一課題的研究體會概率的廣泛應(yīng)用。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)5

      單項(xiàng)式與多項(xiàng)式

      僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個數(shù)或字母也是單項(xiàng)式。

      單項(xiàng)式中的數(shù)字因數(shù)叫做這個單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。

      當(dāng)一個單項(xiàng)式的系數(shù)是1或—1時,“1”通常省略不寫。

      一個單項(xiàng)式中,所有字母的指數(shù)的和叫做這個單項(xiàng)式的次數(shù)。

      如果在幾個單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項(xiàng)式就叫做同類單項(xiàng)式,簡稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。

      1、多項(xiàng)式

      有有限個單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

      多項(xiàng)式里每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

      單項(xiàng)式可以看作是多項(xiàng)式的特例

      把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

      在多項(xiàng)式中,所含的不同未知數(shù)的個數(shù),稱做這個多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個數(shù),稱為這個多項(xiàng)式的項(xiàng)數(shù)所含個單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個多項(xiàng)式的次數(shù)。

      2、多項(xiàng)式的值

      任何一個多項(xiàng)式,就是一個用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的.式子。

      3、多項(xiàng)式的恒等

      對于兩個一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

      性質(zhì)1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。

      性質(zhì)2如果fx==gx,那么,這兩個多項(xiàng)式的個同類項(xiàng)系數(shù)就一定對應(yīng)相等。

      4、一元多項(xiàng)式的根

      一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。

      多項(xiàng)式的加、減法,乘法

      1、多項(xiàng)式的加、減法

      2、多項(xiàng)式的乘法

      單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。

      3、多項(xiàng)式的乘法

      多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式等每一項(xiàng)乘以另一個多項(xiàng)式的各項(xiàng),再把所得的積相加。

      常用乘法公式

      公式I平方差公式

      a+ba—b=a^2—b^2

      兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)6

      不等式的概念

      1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。

      2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。

      3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

      4、求不等式的解集的過程,叫做解不等式。

      5、用數(shù)軸表示不等式的方法。

      不等式基本性質(zhì)

      1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。

      2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。

      3、不等式兩邊都乘以或除以同一個負(fù)數(shù),不等號的方向改變。

      4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

      一元一次不等式

      1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

      2、解一元一次不等式的一般步驟:1去分母2去括號3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。

      一元一次不等式組

      1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

      2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

      3、求不等式組的解集的過程,叫做解不等式組。

      4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

      5、一元一次不等式組的解法

      1分別求出不等式組中各個不等式的解集。

      2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

      6、不等式與不等式組

      不等式:①用符號〉,=,〈號連接的`式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。

      7、不等式的解集:

     、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

     、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

     、矍蟛坏仁浇饧倪^程叫做解不等式。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)7

      直角三角形的判定方法:

      判定1:定義,有一個角為90°的三角形是直角三角形。

      判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的`逆定理)。

      判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

      判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。

      判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么

      判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。

      判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)8

      (三角形中位線的定理)

      三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。

      (平行四邊形的性質(zhì))

     、倨叫兴倪呅蔚膶呄嗟龋

     、谄叫兴倪呅蔚膶窍嗟龋

     、燮叫兴倪呅蔚膶蔷互相平分。

     。ň匦蔚男再|(zhì))

      ①矩形具有平行四邊形的一切性質(zhì);

     、诰匦蔚乃膫角都是直角;

     、劬匦蔚膶蔷相等。

      正方形的.判定與性質(zhì)

      1、判定方法:

      1鄰邊相等的矩形;

      2鄰邊垂直的菱形;

      3對角線垂直的矩形;

      4對角線相等的菱形;

      2、性質(zhì):

      1邊:四邊相等,對邊平行;

      2角:四個角都相等都是直角,鄰角互補(bǔ);

      3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。

      等腰三角形的判定定理

     。ǖ妊切蔚呐卸ǚ椒ǎ

      1、有兩條邊相等的三角形是等腰三角形。

      2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。

      角平分線:把一個角平分的射線叫該角的角平分線。

      定義中有幾個要點(diǎn)要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點(diǎn)

      性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等

      判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上

      標(biāo)準(zhǔn)差與方差

      極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。

      計(jì)算器——求標(biāo)準(zhǔn)差與方差的一般步驟:

      1、打開計(jì)算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計(jì)SD狀態(tài)。

      2、在開始數(shù)據(jù)輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計(jì)存儲器。

      3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。

      4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;

      5、標(biāo)準(zhǔn)差的平方就是方差。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)9

      第21章二次根式

      1、二次根式:一般地,式子叫做二次根式。

      注意:

     。1)若這個條件不成立,則不是二次根式;

     。2)是一個重要的非負(fù)數(shù),即; ≥0。

      2、重要公式:

      3、積的算術(shù)平方根:

      積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

      4、二次根式的乘法法則:。

      5、二次根式比較大小的方法:

     。1)利用近似值比大;

      (2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小;

     。3)分別平方,然后比大小。

      6、商的算術(shù)平方根:,

      商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

      7、二次根式的除法法則:

      分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

      8、最簡二次根式:

      (1)滿足下列兩個條件的二次根式,叫做最簡二次根式,

     、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,

     、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式;

      (2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;

      (3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

      (4)二次根式計(jì)算的最后結(jié)果必須化為最簡二次根式。

      9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

      10、二次根式的混合運(yùn)算:

      (1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;

      (2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

      第22章一元二次方程

      1、一元二次方程的一般形式:

      a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

      2、一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少。

      3。一元二次方程根的判別式:當(dāng)ax2+bx+c=0

      (a≠0)時,Δ=b2—4ac叫一元二次方程根的.判別式。請注意以下等價命題:

      Δ>0 <=>有兩個不等的實(shí)根;

      Δ=0 <=>有兩個相等的實(shí)根;Δ<0 <=>無實(shí)根;

      4。平均增長率問題————————應(yīng)用題的類型題之一(設(shè)增長率為x):

     。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。

     。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。

      第23章旋轉(zhuǎn)

      1、概念:

      把一個圖形繞著某一點(diǎn)O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

      旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

      2、旋轉(zhuǎn)的性質(zhì):

     。1)旋轉(zhuǎn)前后的兩個圖形是全等形;

     。2)兩個對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等

     。3)兩個對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

      3、中心對稱:

      把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或中心對稱,這個點(diǎn)叫做對稱中心。

      這兩個圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn)。

      4、中心對稱的性質(zhì):

     。1)關(guān)于中心對稱的兩個圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

     。2)關(guān)于中心對稱的兩個圖形是全等圖形。

      5、中心對稱圖形:

      把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)就是它的對稱中心。

    北師大版初三數(shù)學(xué)知識點(diǎn)總結(jié)10

      1、圖形的相似

      相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等;

      兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個多邊形相似;

      相似比:相似多邊形對應(yīng)邊的比值。

      2、相似三角形

      判定:

      平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的`三角形和原三角形相似;

      如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;

      如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;

      如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。

      3相似三角形的周長和面積

      相似三角形(多邊形)的周長的比等于相似比;

      相似三角形(多邊形)的面積的比等于相似比的平方。

      4位似

      位似圖形:兩個多邊形相似,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,這樣的兩個圖形叫位似圖形,相交的點(diǎn)叫位似中心。

    【初三數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

    初三數(shù)學(xué)知識點(diǎn)總結(jié)12-10

    初三數(shù)學(xué)知識點(diǎn)總結(jié)12-22

    初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)06-08

    初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)11-18

    初三數(shù)學(xué)知識點(diǎn)總結(jié)15篇12-07

    初三數(shù)學(xué)知識點(diǎn)總結(jié)(15篇)12-08

    初三數(shù)學(xué)上冊知識點(diǎn)總結(jié)10篇12-16

    初三物理知識點(diǎn)總結(jié)11-28

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)12-12