在线观看1024国产,亚洲精品国产综合野狼,欧美自拍清纯日韩一区二区三区,欧美 亚洲 国产 高潮

<dfn id="u8moo"><source id="u8moo"></source></dfn>
  • <dd id="u8moo"><s id="u8moo"></s></dd><menu id="u8moo"></menu><dd id="u8moo"></dd>
    
    
    <ul id="u8moo"></ul>
    <ul id="u8moo"><acronym id="u8moo"></acronym></ul>
  • <strike id="u8moo"><noscript id="u8moo"></noscript></strike>
  • <dd id="u8moo"></dd>
  • 高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié)

    時(shí)間:2024-10-16 11:54:50 歐敏 總結(jié)范文 我要投稿
    • 相關(guān)推薦

    高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié)(通用7篇)

      在平時(shí)的學(xué)習(xí)中,很多人都經(jīng)常追著老師們要知識(shí)點(diǎn)吧,知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編為大家整理的高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié)范本,希望對(duì)大家有所幫助。

    高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié)(通用7篇)

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 1

      一、直線與圓:

      1、直線的傾斜角 的范圍是

      在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時(shí),規(guī)定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

      過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

      3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn) 斜率為 ,則直線方程為 ,

     、菩苯厥剑褐本在 軸上的截距為 和斜率,則直線方程為

      4、 , ,① ∥ , ; ② .

      直線 與直線 的位置關(guān)系:

      (1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

      5、點(diǎn) 到直線 的距離公式 ;

      兩條平行線 與 的距離是

      6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

      注意能將標(biāo)準(zhǔn)方程化為一般方程

      7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問題.① 相離 ② 相切 ③ 相交

      9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長(zhǎng)

      二、圓錐曲線方程:

      1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c; a2=b2+c2 ;

      2、雙曲線:①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線 或 c2=a2+b2

      3、拋物線 :①方程y2=2px注意還有三個(gè),能區(qū)別開口方向; ②定義:PF=d焦點(diǎn)F( ,0),準(zhǔn)線x=- ;③焦半徑 ; 焦點(diǎn)弦=x1+x2+p;

      4、直線被圓錐曲線截得的弦長(zhǎng)公式:

      5、注意解析幾何與向量結(jié)合問題:1、 , . (1) ;(2) .

      2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即

      3、模的計(jì)算:a= . 算模可以先算向量的平方

      4、向量的運(yùn)算過程中完全平方公式等照樣適用:

      三、直線、平面、簡(jiǎn)單幾何體:

      1、學(xué)會(huì)三視圖的分析:

      2、斜二測(cè)畫法應(yīng)注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸 ox、oy、使∠xoy=45°(或135° ); (2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側(cè))面積與體積公式:

      ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)= ;③體積:V=S底h

     、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)= ;③體積:V= S底h:

     、桥_(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

     、惹蝮w:①表面積:S= ;②體積:V=

      4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

     、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      四、導(dǎo)數(shù):

      1、導(dǎo)數(shù)的定義: 在點(diǎn) 處的導(dǎo)數(shù)記作 .

      2. 導(dǎo)數(shù)的幾何物理意義:曲線 在點(diǎn) 處切線的斜率

     、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。

      3.常見函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;

      4.導(dǎo)數(shù)的四則運(yùn)算法則:

      5.導(dǎo)數(shù)的應(yīng)用:

      (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個(gè)區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);

      注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。

      (2)求極值的步驟:

     、偾髮(dǎo)數(shù) ;

     、谇蠓匠 的根;

     、哿斜恚簷z驗(yàn) 在方程 根的左右的`符號(hào),如果左正右負(fù),那么函數(shù) 在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個(gè)根處取得極小值;

      (3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

      ?求 的根; ?把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。

      五、常用邏輯用語(yǔ):

      1、四種命題:

      ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

      注:

      1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

      2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

      3、邏輯聯(lián)結(jié)詞:

     、徘(and) :命題形式 p q; p q p q p q p

     、苹(or):命題形式 p q; 真 真 真 真 假

     、欠(not):命題形式 p . 真 假 假 真 假

      假 真 假 真 真

      假 假 假 假 真

      “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

      “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

      “非命題”的真假特點(diǎn)是“一真一假”

      4、充要條件

      由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

      5、全稱命題與特稱命題:

      短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。

      短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào) 表示,含有存在量詞的命題,叫做存在性命題。

      全稱命題p: ; 全稱命題p的否定 p:。

      特稱命題p: ; 特稱命題p的否定 p:。

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 2

      1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      1.2空間幾何體的三視圖和直觀圖

      11三視圖:

      正視圖:從前往后

      側(cè)視圖:從左往右

      俯視圖:從上往下

      22畫三視圖的原則:

      長(zhǎng)對(duì)齊、高對(duì)齊、寬相等

      33直觀圖:斜二測(cè)畫法

      44斜二測(cè)畫法的步驟:

      (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

      (2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;

      (3).畫法要寫好。

      5用斜二測(cè)畫法畫出長(zhǎng)方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

      1.3空間幾何體的表面積與體積

      (一)空間幾何體的表面積

      1棱柱、棱錐的表面積:各個(gè)面面積之和

      2圓柱的表面積3圓錐的表面積

      4圓臺(tái)的表面積

      5球的表面積

      (二)空間幾何體的體積

      1柱體的體積

      2錐體的體積

      3臺(tái)體的體積

      4球體的體積

      高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線與平面的位置關(guān)系

      2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

      2.1.1

      1平面含義:平面是無限延展的

      2平面的畫法及表示

      (1)平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(zhǎng)(如圖)

      (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。

      3三個(gè)公理:

      (1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)

      符號(hào)表示為

      A∈L

      B∈L=>Lα

      A∈α

      B∈α

      公理1作用:判斷直線是否在平面內(nèi)

      (2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。

      符號(hào)表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面α,

      使A∈α、B∈α、C∈α。

      公理2作用:確定一個(gè)平面的依據(jù)。

      (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

      符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L

      公理3作用:判定兩個(gè)平面是否相交的依據(jù)

      2.1.2空間中直線與直線之間的位置關(guān)系

      1空間的兩條直線有如下三種關(guān)系:

      共面直線

      相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);

      平行直線:同一平面內(nèi),沒有公共點(diǎn);

      異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。

      2公理4:平行于同一條直線的兩條直線互相平行。

      符號(hào)表示為:設(shè)a、b、c是三條直線

      a∥b

      c∥b

      強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

      公理4作用:判斷空間兩條直線平行的依據(jù)。

      3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

      4注意點(diǎn):

     、賏與b所成的角的大小只由a、b的.相互位置來確定,與O的選擇無關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上;

     、趦蓷l異面直線所成的角θ∈(0,);

     、郛(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;

     、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;

      ⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

      2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

      1、直線與平面有三種位置關(guān)系:

      (1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

      (2)直線與平面相交——有且只有一個(gè)公共點(diǎn)

      (3)直線在平面平行——沒有公共點(diǎn)

      指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

      aαa∩α=Aa∥α

      2.2.直線、平面平行的判定及其性質(zhì)

      2.2.1直線與平面平行的判定

      1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

      簡(jiǎn)記為:線線平行,則線面平行。

      符號(hào)表示:

      aα

      bβ=>a∥α

      a∥b

      2.2.2平面與平面平行的判定

      1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。

      符號(hào)表示:

      aβ

      bβ

      a∩b=Pβ∥α

      a∥α

      b∥α

      2、判斷兩平面平行的方法有三種:

      (1)用定義;

      (2)判定定理;

      (3)垂直于同一條直線的兩個(gè)平面平行。

      2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

      1、定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

      簡(jiǎn)記為:線面平行則線線平行。

      符號(hào)表示:

      a∥α

      aβa∥b

      α∩β=b

      作用:利用該定理可解決直線間的平行問題。

      2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

      符號(hào)表示:

      α∥β

      α∩γ=aa∥b

      β∩γ=b

      作用:可以由平面與平面平行得出直線與直線平行

      2.3直線、平面垂直的判定及其性質(zhì)

      2.3.1直線與平面垂直的判定

      1、定義

      如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

      2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

      注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

      b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

      2.3.2平面與平面垂直的判定

      1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形

      2、二面角的記法:二面角α-l-β或α-AB-β

      3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

      2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

      1、定理:垂直于同一個(gè)平面的兩條直線平行。

      2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 3

      基本概念

      公理1:如果一條直線上的兩點(diǎn)在一個(gè)x面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)x面內(nèi)。

      公理2:如果兩個(gè)x面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。

      公理3:過不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)x面。

      推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)x面。

      推論2:經(jīng)過兩條相交直線,有且只有一個(gè)x面。

      推論3:經(jīng)過兩條x行直線,有且只有一個(gè)x面。

      公理4:x行于同一條直線的兩條直線互相x行。

      等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別x行并且方向相同,那么這兩個(gè)角相等。

      簡(jiǎn)單隨機(jī)抽樣的定義:

      一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。

      簡(jiǎn)單隨機(jī)抽樣的`特點(diǎn):

      (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為:

      (2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

      (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。

      (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

      簡(jiǎn)單抽樣常用方法:

      (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。

      (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開始的數(shù)字;第三步,獲取樣本號(hào)碼概率。

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 4

      等差數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。

      那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:

      將以上n—1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項(xiàng)公式。

      此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。

      值得說明的是,前n項(xiàng)的和Sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。

      等比數(shù)列

      對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。

      那么,通項(xiàng)公式為(即a1乘以q的`(n—1)次方,其推導(dǎo)為“連乘原理”的思想:

      a2=a1Xq,

      a3=a2Xq,

      a4=a3Xq,

      an=an—1Xq,

      將以上(n—1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。

      此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1Xn

      當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1X(1—q^(n))/(1—q)。

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 5

      在中國(guó)古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

      1.任意角

     。1)角的分類:

     、侔葱D(zhuǎn)方向不同分為正角、負(fù)角、零角。

     、诎唇K邊位置不同分為象限角和軸線角。

     。2)終邊相同的角:

      終邊與角相同的角可寫成+k360(kZ)。

     。3)弧度制:

     、1弧度的角:把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角。

     、谝(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零||=,l是以角作為圓心角時(shí)所對(duì)圓弧的長(zhǎng),r為半徑。

     、塾没《茸鰡挝粊矶攘拷堑闹贫冉凶龌《戎啤1戎蹬c所取的r的大小無關(guān),僅與角的大小有關(guān)。

      ④弧度與角度的換算:360弧度;180弧度。

     、莼¢L(zhǎng)公式:l=||r,扇形面積公式:S扇形=lr=||r2.

      2.任意角的三角函數(shù)

     。1)任意角的三角函數(shù)定義:

      設(shè)是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。

     。2)三角函數(shù)在各象限內(nèi)的符號(hào)口訣是:一全正、二正弦、三正切、四余弦。

      3.三角函數(shù)線

      設(shè)角的`頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長(zhǎng)線相交于點(diǎn)T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 6

      一、曲線與方程

      1、橢圓

      橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對(duì)本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn)、橢圓方面的知識(shí)與向量等知識(shí)的綜合考查命題趨勢(shì)較強(qiáng)。

      2、雙曲線

      標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法、利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點(diǎn)和雙曲線上的任意一點(diǎn)的坐標(biāo)都可以運(yùn)用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點(diǎn)曲線系方程求解,其要點(diǎn)是根據(jù)題目中的一個(gè)條件寫出含一個(gè)參數(shù)的共焦點(diǎn)的二次曲線系方程,再根據(jù)另外一個(gè)條件求出這個(gè)參數(shù)、

      3、拋物線

     。1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。

      (2)韋達(dá)定理的熟練運(yùn)用,可以防止運(yùn)算復(fù)雜的焦點(diǎn)坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。

     。3)焦點(diǎn)弦的幾何性質(zhì)是答題中容易忽略的問題,在復(fù)雜的求解拋物線方程中,運(yùn)用好這方面的知識(shí)能夠少走很多彎路。

      用點(diǎn)差法解圓錐曲線的'中點(diǎn)弦問題

      二、空間幾何體

      1、空間幾何體的考查主要以其識(shí)別和應(yīng)用為主,以填空題的形式出現(xiàn),分值大約在5分。對(duì)空間幾何體的形狀、位置關(guān)系、數(shù)量特征、表面積和體積的命題需要加以關(guān)注。

      2、球的面積和體積:計(jì)算球的面積和體積就要求出球的半徑,在具體的空間幾何體中,首先要確定球心的位置,這樣才能根據(jù)已知數(shù)據(jù)求出半徑,除球以外的空間幾何體在求體積時(shí)都離不開”高“,要注意使用線面垂直的相關(guān)定理確定高線。

      三、正弦定理和余弦定理

      1、正弦定理在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R

      2、余弦定理三角形中,任意一邊的平方等于另外兩邊的平方和減去另兩邊及其夾角的余弦的積的兩倍。

      3、例題:熊丹老師教你正弦定理做題時(shí)的注意事項(xiàng)

      高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié) 7

      (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

      (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

      (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

      (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

      (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的'增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

      (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。

    【高二數(shù)學(xué)的選修1知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    高二物理選修二知識(shí)點(diǎn)總結(jié)10-09

    高二物理選修一知識(shí)點(diǎn)總結(jié)優(yōu)秀09-22

    高二生物復(fù)習(xí)知識(shí)點(diǎn)總結(jié)選修03-28

    高二選修三生物知識(shí)點(diǎn)總結(jié)07-05

    高二生物選修二知識(shí)點(diǎn)09-27

    生物選修三知識(shí)點(diǎn)總結(jié)02-03

    生物選修一知識(shí)點(diǎn)總結(jié)08-26

    化學(xué)選修4知識(shí)點(diǎn)總結(jié)02-08

    高二生物選修二復(fù)習(xí)知識(shí)點(diǎn)08-21

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-10