- 相關(guān)推薦
高二數(shù)學(xué)公式總結(jié)
向量公式:
1.單位向量:單位向量a0=向量a/向量a
2.P(x,y)那么向量OP=x向量i+y向量j
向量OP=根號(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
向量P1P2=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=向量a*向量b*Cosα=x1x2+y1y2
Cosα=向量a*向量b/向量a*向量b
(x1x2+y1y2)
=————————————————————
根號(x1平方+y1平方)*根號(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±向量a*向量b
或者x1/x2=y1/y2
7.向量a±向量b平方
=向量a平方+向量b平方±2向量a*向量b
=(向量a±向量b)平方
三角函數(shù)公式:
1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]