- 相關(guān)推薦
數(shù)學(xué)復(fù)習(xí)公式知識(shí)
121①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
、壑本L和⊙O相離 dr
122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,
圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對(duì)邊的和相等
128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135①兩圓外離 dR+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
、軆蓤A內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139正n邊形的每個(gè)內(nèi)角都等于(n-2)180/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
142正三角形面積3a/4 a表示邊長(zhǎng)
143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為
360,因此k(n-2)180/n=360化為(n-2)(k-2)=4
144弧長(zhǎng)計(jì)算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)